
2020 ACM SIGMOD Conference

Rethinking Stateful Stream
Processing with RDMA
Bonaventura Del Monte - Steffen Zeuch - Tilmann Rabl - Volker Markl

© Bonaventura Del Monte

Disclaimer

2

The work behind and content of this presentation
were carried out while I was employed at TU Berlin

The content and opinions expressed in this talk
 do not represent Observe Inc.

© Bonaventura Del Monte

What is this talk about?

3

Enable robust scale-out performance for stateful
streaming queries using high-speed networks

Stateful Streaming Analytics

4

Stream
Processing

Engine

Stateful Streaming Analytics

5

Stream
Processing

Engine

Realtime
Result

\

Stateful Streaming Analytics

6

Stream
Processing

Engine

Operator State: mutable dataset of (k,v)

Realtime
Result

\

Stateful Streaming Analytics

7

Stream
Processing

Engine

Windowed Aggregations, Windowed
Joins, or Machine Learning Tasks

Realtime
Result

\

Operator State: mutable dataset of (k,v)

Stateful Streaming Analytics at Scale

8

billions of events

high cardinality

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

9

billions of events

high cardinality data rate 1-10 GB/s

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

10

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

11

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

12

billions of events

high cardinality

state size 1-10 TB

We need efficient
stateful stream processing

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Sustain high-throughput
stream processing
with low-latency

data rate 1-10 GB/s

© Bonaventura Del Monte

Stream Processing with high-speed network

13

Hash
Partitioning

P

P
C

C

P
C

C

Data partitioning is a network intensive

© Bonaventura Del Monte

Stream Processing with high-speed network

14

Hash
Partitioning

P

P
C

C

P
C

C
0

30

60

90

120

150

12.5

100
119.21

D
at
a
R
at
e
(G

B
/s
)

Ethernet 100 Gbit/s
IB NDR 4X Two NICs

DDR4-2666 (6 Ch.)

 High-speed Networking
 Close to memory bandwidth
Faster than 10Gbps Ethernet

Network

Data partitioning is a network intensive

© Bonaventura Del Monte

Stream Processing with high-speed network

15

112

42

159

53

214

94

264

130

2 4 8 16
0

100

200

300

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

FlinkIB RDMA UpPar

Intel Xeon Gold 5115 @ 2.4 Ghz 10-cores
RAM: 96GB
RNIC: Mellanox Connect-X4 EDR 100Gbps

Hash
Partitioning

P

P
C

C

P
C

C

112

42

159

53

214

94

264

130

2 4 8 16
0

100

200

300

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning

© Bonaventura Del Monte

Stream Processing with high-speed network

16

Simply using a high-speed network is not enough

-3.4x

-9.0x

-2.4x

-7.3x

-1.8x

-4.1x

-1.5x

-3.0x

1 2 4 8 16
0

100

200

300

400

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning C++ Single Node

© Bonaventura Del Monte

Finding the bottleneck

17

Network Bandwidth

Network Bandwidth

8 16 32 64 128 256 512 1024

3

6

9

12

15

3

6

9

12

15

Bu↵er Size (KB)

T
h
ro
u
gh

p
u
t
(G

B
/s
) Data partitioning is a bottleneck

also on two nodes

Partitioning
Servers=2
Threads=10
Partitions=100

No Partitioning
Servers=2
Thread=10

© Bonaventura Del Monte

Finding the bottleneck

18

Data partitioning is a bottleneck
already using two nodes

Network Bandwidth

Network Bandwidth

8 16 32 64 128 256 512 1024

3

6

9

12

15

3

6

9

12

15

Bu↵er Size (KB)

T
h
ro
u
gh

p
u
t
(G

B
/s
)

Late Merge and Global Merge using
distributed memory with RDMA

Partitioning
Servers=2
Threads=10
Partitions=100

No Partitioning
Servers=2
Thread=10

© Bonaventura Del Monte

Slash: network-conscious SPE

19

Hash
Partitioning

P

P

C

C Slash Distributed State Backend

Primary
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Primary Partitions: disjoint
shards of operator state

© Bonaventura Del Monte

Slash: network-conscious SPE

20

Hash
Partitioning

P

P

C

C Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Primary Partitions: disjoint
shards of operator state

© Bonaventura Del Monte

Slash: network-conscious SPE

21

Hash
Partitioning

P

P

C

C Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Replace partitioning with eager computation of
partial states followed by lazy merge

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Primary Partitions: disjoint
shards of operator state

© Bonaventura Del Monte

Slash: network-conscious SPE

22

Hash
Partitioning

P

P

C

C

Replace partitioning with eager computation of
partial states followed by lazy merge

Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Epoch-based synchro-
nisation: to merge leased

and primary partitions

Primary Partitions: disjoint
shards of operator state

© Bonaventura Del Monte

Slash: network-conscious SPE

23

Hash
Partitioning

P

P

C

C

Replace partitioning with eager computation of
partial states followed by lazy merge

Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Epoch-based synchro-
nisation: to merge leased

and primary partitions

Conflict-free
Replicated Data Types:
to solve merge conflicts

Primary Partitions: disjoint
shards of operator state

© Bonaventura Del Monte

Slash: network-conscious SPE

24

Replace partitioning with eager computation of
partial states followed by lazy merge

Hash
Partitioning

P

P

C

C

Epoch-based synchro-
nisation: to merge leased

and primary partitions

Conflict-free
Replicated Data Types:
to solve merge conflicts

Pipelined RDMA Writes

Pipelined RDMA Writes: to
transfer state chunks

asynchronously

Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Primary Partitions: disjoint
shards of operator state

© Bonaventura Del Monte

Performance of Slash

25

12x throughput improvement using 16 nodes

384
765

11242

1768

15953

2207

21494

3254

264130

1 2 4 8 16
0

1000

2000

3000

4000

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

FlinkIB RDMA UpPar Slash C++ Single Node

16-node Slash is 8x faster than optimised single node

384
765

11242

1768

15953

2207

21494

3254

264130

1 2 4 8 16
0

1000

2000

3000

4000

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning Slash C++ Single Node

© Bonaventura Del Monte

Performance of Slash

26

RDMA baseline limited by partitioning speed (CPU-Bound)

Slash is limited by memory speed

384
765

11242

1768

15953

2207

21494

3254

264130

1 2 4 8 16
0

1000

2000

3000

4000

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning Slash C++ Single Node

© Bonaventura Del Monte

Summary
• SPE design to accelerate streaming workloads using RDMA at rack-scale

• No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box

• Achieve 12x throughput improvement over strongest baseline

• Slash is memory-bound; baseline is bound by partitioning speed

27

© Bonaventura Del Monte

Summary

28
Thank you!

• SPE design to accelerate streaming workloads using RDMA at rack-scale

• No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box

• Achieve 12x throughput improvement over strongest baseline

• Slash is memory-bound; baseline is bound by partitioning speed

Backup
Slash

29

© Bonaventura Del Monte

Remote Direct Memory Access

30

Socket

L3PCI-Ex
Controller

PCI-Express Bus

PCI-Express 3.0 Bandwidth: 984.6 MB/s
per lane (16x: 15.74 GB/s)

Port

Infiniband EDR 100Gbps (12.5 GB/s)

Infiniband HDR 200 Gbps (25 GB/s)

Infiniband NDR 400 Gbps (50 GB/s)

PCI-Express 5.0 Bandwidth: 3.93 GB/s
per lane in each direction (16x: 63 GB/s)

© Bonaventura Del Monte

Socked-based vs. RDMA

31

User-space Networking (low latency)
Zero-copy (low latency)

Enables distributed memory (non coherent)

ApplicationBuffer

OS

ApplicationBuffer

OS

 Hardware Hardware

ApplicationBuffer

 OSBuffer

 HardwareBuffer

ApplicationBuffer

 OSBuffer

 HardwareBuffer

Kernel-space Networking
Multiple Data Copies

Two-sided verbs: Send/Recv
One-sided verbs: Read/Write/Atomic

© Bonaventura Del Monte

Distributed Streaming Query Execution

32

P

P

C C

CC

P

P

Shuffler Shuffler

Shuffler Shuffler

Partitioning-based Execution

Hash
Partitioning

P

P

C

C

Thread-local State Partitions
Disjoint State Partitions

© Bonaventura Del Monte

Distributed Streaming Query Execution

33

Partitioning-based Execution

Hash
Partitioning

P

P

C

C

Thread-local State Partitions
Disjoint State Partitions

112

42

159

53

214

94

264

130

2 4 8 16
0

100

200

300

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

FlinkIB RDMA UpPar

Intel Xeon Gold 5115 @ 2.4 Ghz 10-cores
L1: 32KB L2: 10MB
L3: 13.75MB RAM: 96GB
NIC: Mellanox Connect-X4 EDR 100Gbps

P

P

C C

CC

P

P

Shuffler Shuffler

Shuffler Shuffler

© Bonaventura Del Monte

When Slash make sense

• Cost(Partitioning) + Cost(Local Computation) > Cost(Partial Computation) +
Cost(Lazy Merge)

• Keyed Aggregation or Joins (Streaming ETL)

• Define State as a CRDT

• New operators need to use our distributed state abstraction

• Network-hungry such as Cross-Product

• ML Operators

34

© Bonaventura Del Monte

Where RDMA comes into play

35

Node 4
Node 3

Node 2

Node #1

Hash
Index

Operator
Pipeline

Operator
Pipeline

LSS Fragment
Partition 2

Hash
Index

Operator
Pipeline

Operator
Pipeline

RMW/Scan
Latch-free

Update&Lookup LSS In-place Update RDMA-based
State Transfer

In-place Update of
Primary Partition

Operators observe
remote updates

LSS Fragment
Partition 3

LSS Fragment
Partition 4

LSS Fragment Partition 3

LSS Fragment Partition 4

LSS Primary Partition 1 LSS Fragment Partition 1

LSS Primary Partition 2

1 2

3

© Bonaventura Del Monte

Cost of RDMA

• Mellanox (now Nvidia) Connect X-6 200Gpbs sold at about 1200$

• Azure RDMA-capable H/HB instances: 800/1600$/mo

• AWS has Elastic Fabric Adapter (Send/Recv): 2180$/mo (m6in.32xlarge)

36

© Bonaventura Del Monte

Large SPE deployments

• Alibaba: 1.5M CPU for Flink (35000 jobs)

• Netflix: 14k nodes with 22k CPU (100s jobs)

37

© Bonaventura Del Monte

Slash Performance

38

Nexmark Query 7

91
7

68
8

12
97

95
13

20
64

86
18

26
01

11
4

25

2 4 8 16

100

101

102

103

104

Th
ro

ug
hp

ut
(M

re
c/

s)

11
9

41
2

24
7

69
2

50
7

12
3

6

12
83

16
3

10

2 4 8 16

100

101

102

103

104

Th
ro

ug
hp

ut
(M

re
c/

s)

Nexmark Query 8

© Bonaventura Del Monte

Slash Microbenchmarks: COST

39

2.
4x

4.
5x 5.
4x

11
.6

x

1.
6x 2.

2x 3.
5x 4.

4x

2.
5x

5.
7x 7.

1x 10
.5

x

CM NB7 YSB

L 2 4 8 16 L 2 4 8 16 L 2 4 8 16
102

103

104

Number of Nodes

Th
ro

ug
hp

ut
(M

re
c/

s)

© Bonaventura Del Monte

Slash Microbenchmarks: Latency

40

RD
M

A
U

pPar
Slash

8 16 32 64 128 256 512 1024

100

101

102

103

104

100

101

102

103

104

Buffer Size (KB)

La
te

nc
y

(𝜇s)

© Bonaventura Del Monte

Slash Microbenchmarks: Node Parallelism

41

2 Nodes

4 Nodes

8 Nodes

15

30

45

2 4 8 10 16 20 32 40
Number of Threads

Th
ro

ug
hp

ut
(G

B/
s)

SUT RDMA UpPar Slash

© Bonaventura Del Monte

Slash Microbenchmarks: Skew

42

RO
Y

SB

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

101

102

103

104

101

102

103

104

Skew (Zipfian)

Th
ro

ug
hp

ut
(M

re
c/

s)

SUT Slash Upfront Slash Lazy

© Bonaventura Del Monte

Slash State Backend Internals

43

Node 4
Node 3

Node 2

Node #1

Hash
Index

Operator
Pipeline

Operator
Pipeline

LSS Fragment
Partition 2

Hash
Index

Operator
Pipeline

Operator
Pipeline

RMW/Scan
Latch-free

Update&Lookup LSS In-place Update RDMA-based
State Transfer

In-place Update of
Primary Partition

Operators observe
remote updates

LSS Fragment
Partition 3

LSS Fragment
Partition 4

LSS Fragment Partition 3

LSS Fragment Partition 4

LSS Primary Partition 1 LSS Fragment Partition 1

LSS Primary Partition 2

1 2

3

Fragment Partition (thesis)

 is the Leased Partition (talk)

© Bonaventura Del Monte

Leased Partition #1

Anatomy of Slash Partitions

44

Old LSS (R/O, to GC) New LSS (R/W)

Hash-Index

Leased Partition #2

To Sync via
RDMA (R/O LSS)

Primary Partition

Mutable LSS (R/W)

© Bonaventura Del Monte

Conflict Free Replicated Data Types

• Inspired by AnnaKVS and FASTER design

• Define a “merge function” f(k, v1, v2) to merge v1 and v2 within the same
window

• Windowed aggregation:

• Average, Sum, Count

• Windowed Join:

• List of segments

45

© Bonaventura Del Monte

RDMA Data Channel details

• Pipelined RDMA Writes of data chunks arranged in a circular queue

• Keep the RNIC well-fed with data

• Async: too little -> low bandwidth; too much -> RNIC cache trashing

• Polling on footer

• Zero-copy

• Credit-based flow control to avoid producer overwhelm consumer

46

© Bonaventura Del Monte

Going beyond rack-scale

• Slash requires a number of RDMA connections quadratic in the num of nodes

• Use Two-sided (Send/Recv) instead of RDMA Write/Read

• Kalia et al.: RDMA requires NIC-managed connection state (a Connect-X5 RNIC
drop 50% throughput with 5000 connections = 70 Slash instances)

• RNIC SRAM: ~2 MB for connection and data structures, connection state ~375
bytes

• Switch to application-managed connection state (datagram)

• Requires software Congestion Control (e.g., rate-based) and achieves 70-92% of
network throughput

47

© Bonaventura Del Monte

RDMA Atomics

• Bound by PCI-Ex RTT as a lock in the RNIC is held until the op is completed

• 100s of ns with PCI-Express 3.0

• Should evaluate with PCI-Express 5.0 and newer models?

• Atomic semantics are atomic only among RNICs not CPU

• Consensus in the Network community on avoiding them

48

© Bonaventura Del Monte

Slash internal processing

49

Input Stream
Flow

Pre-
Processing

Window
Assignment Window

Triggering
Post-

Processing

Slash State
Backend

Input Stream
Flow

Pre-
Processing

Window
Assignment

Window
Triggering

Post-
Processing

Partial Global

Processing Instance #1

Processing Instance #2

Filter WindowSource Sink

© Bonaventura Del Monte

Slash internal processing

50

RDMARDMA

Worker
Thread

Compute

Ready to Process Coroutines

Running

RDMA Compute ComputeCompute

RDMA

Parked

© Bonaventura Del Monte

Micro-architecture Analysis

51

Main-Memory

CPU #0
…

L1

Core #0 Core #1 Core #p

L1

L2 L2

L1

L2

L3 Cache

…

…

+ Speed
- Size

+ Size
- Speed

Tr
ad

e-
off

PCI-Express Bus

© Bonaventura Del Monte

CPU

Micro-architecture Analysis

52

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3
Main-Memory

CPU #0
…

L1

Core #0 Core #1 Core #p

L1

L2 L2

L1

L2

L3 Cache

…

…

PCI-Express Bus

© Bonaventura Del Monte

Micro-architecture Analysis

53

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

© Bonaventura Del Monte

Micro-architecture Analysis

54

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Complex instructions in L1i decoded in μOps

© Bonaventura Del Monte

Micro-architecture Analysis

55

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend delivers up to 4 μOps per cycle to backend (Intel)

© Bonaventura Del Monte

Micro-architecture Analysis

56

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Provides data to registers from L1d, L2, LLC, and Main-Memory

© Bonaventura Del Monte

Micro-architecture Analysis

57

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

© Bonaventura Del Monte

Micro-architecture Analysis

58

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Memory Stalls

Data Cache Miss
L1 · L2 · L3 · TLB

© Bonaventura Del Monte

Micro-architecture Analysis

59

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Memory Stalls

Data Cache Miss
L1 · L2 · L3 · TLB

Execution Stalls
Synchronisation

Waiting
Compute

Hardware Performance Counters help
 us understand CPU performance

© Bonaventura Del Monte

Slash Performance Gain Explained

60

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Sender of RDMA UpPar is Frontend and Core Bound
Partitioning involves complex code and spin waiting

© Bonaventura Del Monte

Slash Performance Gain Explained

61

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Receiver of RDMA UpPar spin waits
on data from the sender

© Bonaventura Del Monte

Slash Performance Gain Explained

62

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Receiver of RDMA UpPar spin waits
on data from the sender

RDMA UpPar limited by
partitioning speed (CPU-Bound)

© Bonaventura Del Monte

Slash Performance Gain Explained

63

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Slash waits for data to be materialized for processing

RDMA UpPar limited by
partitioning speed (CPU-Bound)

Slash is bound by memory speed

