Rethinking Stateful Stream
Processing with RDMA

Bonaventura Del Monte - Steffen Zeuch - Tilmann Rabl - Volker Markl

2020 ACM SIGMOD Conference

Hasso _
Plattner B | O |_ D
oital Ene The r the Foundations

Instltut
Digital Engineering

Disclaimer

The work behind and content of this presentation
were carried out while | was employed at TU Berlin

The content and opinions expressed In this talk
do not represent Observe Inc.

© Bonaventura Del Monte

What is this talk about?
Enable robust scale-out performance for stateful
streaming queries using high-speed networks

© Bonaventura Del Monte

Stateful Streaming Analytics

Stream
Processing

] Engine

» ’

Stateful Streaming Analytics

See what's next!

OOOOOOOOOOOOOOOOO

Processing Result

Engine

Credit Card Fraud Detection

Stateful Streaming Analytics

See what's next!

WATCH ANYWHERE. C YT

Processing Result
B Engine
L

Operator State: mutable dataset of (k,v)

Credit Card Fraud Detection

Stateful Streaming Analytics
iy

-
=

—

See what's nextt

WATCH ANYWHERE. CANCEL ANYTIME.

Stroam
Processing
Engine

Realtime
Result

Stateful Streaming Analytics at Scale

See what's next!
AN HERE. CANCEL ANYTIME. v /

IATCH ANYWHERE. Ci

H e
billions of events

high cardinality

Credit Card Fraud Detection

Stream
Processing
Engine

Stream
Processing
Engine

Stream
Processing
Engine

Stream
Processing
Engine

Stateful Streaming Analytics at Scale

See what's next!
AN HERE. CANCEL ANYTIME. v /

IATCH ANYWHERE. Ci

high cardinality

Credit Card Fraud Detection

H e
billions of events

data rate 1-10 GB/s

Stream
Processing
Engine

Stream
Processing
Engine

Stream
Processing
Engine

Stream
Processing
Engine

Stateful Streaming Analytics at Scale

See what's next!
AN HERE. CANCEL ANYTIME. v /) 77

IATCH ANYWHERE. Ci

high cardinality

Credit Card Fraud Detection

H e
billions of events

data rate 1-10 GB/s

state size 1-10 TB

Stream
Processing
Engine

Stream
Processing
Engine

Stream
Processing
Engine

Stream
Processing
Engine

10

Stateful Streaming Analytics at Scale

state size 1-10 TB

- Epg Stream Stream
billions of events PrCéce§S|ng PrCéce§S|ng
high cardinality data rate 1-10 GB/s ngine ngine
I i
~ pn = - -_—
\Q o~ B L m — =
N =2 Stream Stream
Processing Processing

Engine Engine

stripe

11

Stateful Streaming Analytics at Scale

state size 1-10 TB

- Epg Stream Stream
billions of events Proce_ssing Proce_ssing
high cardinality data rate 1-10 GB/s Engine Engine Sustain high-throughput
- O stream processing
~ p— with low-latency
i -
(O Stream Stream

Processing Processing

Engine Engine

We need efficient
stateful stream processing

12

Stream Processing with high-speed network

Hash
Partitioning —

2T,
XS

v'*‘g‘.

Z
G“&

Data partitioning is a network intensive

© Bonaventura Del Monte 1 3

Stream Processing with high-speed network

Hash

Partitioning

Data partitioning is a network intensive

© Bonaventura Del Monte

Network

High-speed Networking
Close to memory bandwidth
Faster than 10Gbps Ethernet

— 150

P 119.21

an

o P 100 [

g 90 -

=60 G

< B

g 900 125 o
0 etenetanats]

Ethernet 100 Gbit/s
IB NDR 4X Two NICs

DDR4-2666 (6 Ch.)

14

Stream Processing with high-speed network

Hash
Partitioning

Flink over IB [l RDMA Partitioning

300
Q
® 900
=
=
o,
o
= 100
o
—
s
—

© Bonaventura Del Monte

2

112

42 I
O_

264
214

159

4 8
Number of Servers

Intel Xeon Gold 5115 @ 2.4 Ghz 10-cores
RAM: 96GB
RNIC: Mellanox Connect-X4 EDR 100Gbps

15

Stream Processing with high-speed network

B Flink over IB [RDMA Partitioning C-++ Single Node

-2.4x

Throughput (M rec/s)
=
S

1 2 4
Number of Servers

© Bonaventura Del Monte 1 6

Finding the bottleneck

—_ =
Do Ot

Lw O O

Network Bandwidth

Partitioning
Servers=2 Data partitioning is a bottleneck

Threads=10 also on two nodes
Partitions=100

—

Throughput (GB/s)
W O © b Ot

Network Bandwidth

No Partitioning
Servers=2
Thread=10

32 04 128 200 512 1024
Buffer Size (KB)

© Bonaventura Del Monte

Finding the bottleneck

—_ =
Do Ot

Lo O O
L1

Network Bandwidth

Partitioning
Servers=2 Data partitioning is a bottleneck

Threads=10 already using two nodes
Partitions=100

—

Throughput (GB/s)
W O © b Ot

Network Bandwidth

No Partitioning

Servers=2 L ate Merge and Global Merge using
Thread=10 distributed memory with RDMA

32 04 128 200 512 1024
Buffer Size (KB)

© Bonaventura Del Monte

Slash: network-conscious SPE

Slash Distributed State Backend

Primary Primary
Partitio Partitio

Primary
Partitio

Hash
Partitioning —

© Bonaventura Del Monte 1 9

Slash: network-conscious SPE

Hash
Partitioning

Yo

o s Primary :
rimary Lcased gy Partitio :
Partitio Partiton] = = .

Leasedfj Leased: - Server 2:
Partition Partition = = nn

Slash Distributed State Backend
Primar);% Primary n% G
Partitio Partitio :

Server 4

© Bonaventura Del Monte

Primary Partitions: disjoint

shards of operator state

20

Slash: network-conscious SPE

Primary Partitions: disjoint

: Prima : shards of operator state
Loased {3 Leased @ | pition E P
: E Partition

Primary
Partitio

Leasedfj Leased@: | Leased
Hash . Partition Partition—= = [Partition

Partitioning —

Partition

Slash
Primary L eased Leaseci- Primary
Partitio PartitonT = 2| Partitio Partitio

| eased | eased g :| Leased | eased
Partition Partition’: :Partition. Partitio

Replace partitioning with eager computation of

partial states followed by lazy merge

© Bonaventura Del Monte 21

Slash: network-conscious SPE

.......................................

R P S o Primary Partitions: disjoint

Primary [oase d@ //;’ar/,/;?so n% shards of operator state
: Partitio - | Partition n
:Server 1 - I : | : Server 2 Epoch-based synchro-
Hash : QQ | Pl nﬂ nisation: to merge leased
Par’[i’[iOﬂiﬂg - 2 teessssssssspssssssssssssasgesssssssns N\ ‘tsssssssssssssssssssssssssaffssssssssans and primary partitions

...

Primary Leased @ Primary
. Partitio PartitionT * : | Partitio o
i i - Leased :
:Server 3 - o Partitio Server 4:

ll

Replace partitioning with eager computation of

partial states followed by lazy merge

© Bonaventura Del Monte 22

Slash: network-conscious SPE

E—— G . Primary Partitions: disjoint

; Primary - shards of operator state

: Leased@ Part/t/on% G :

= | Partition -

E | : Server 2 Epoch-based synchro-
Hash nﬂ nisation: to merge leased

Partltlonlng < /YUEERNEERNININENEENNENNRNEERRNQEREEREREEERTON ‘cssssssssmsssmsssmnssmnnsnnsfesssmmmmmnt and prlmary partltlons

...

. C Conflict-free

: Primary Leased@ Frimary : Replicated Data Types:

: Partitio PartitionT* Partitio : .

: : : to solve merge conflicts
I Leased

Partitio

ll

Replace partitioning with eager computation of

partial states followed by lazy merge

© Bonaventura Del Monte 23

Slash: network-conscious SPE

Pipelined RDMA Writes

:‘ -------------------------------------- - FE—— (R ,“ Prlmary Partl-tlons dISJOIth

Primary I [oase d@ //;’ar/,/;?so n% shards of operator state

Partitio . z| Partition .

Server 1 o - Server 2. Epoch-based synchro-
Hash QQ nﬂ nisation: to merge leased

Partlthnlﬂg - SwmmmmmsssEEEEEEEEESSESEEREQEEEEEEEEES L e N NN o 0. and prlmary partl'tlons
Slash ")lstrlbutep State Backend

Gt e, Qe e . Son it froe
: G & ’m,?”;% Leased@ Pmarﬂ% G 5 Replicated Data Types:

: Partitio PartitionT* Partitio n .

: : : to solve merge conflicts

: : Leased :

:Server 3 | | 3 | [Partitio Server 4: Pipelined RDMA Writes: to
nn ﬁﬁ transfer state chunks

asynchronously

Replace partitioning with eager computation of

partial states followed by lazy merge

© Bonaventura Del Monte 24

Performance of Slash

B Flink over IB B RDMA Partitioning [Slash C++ Single Node
4000
— 3254
=
S 3000 -
= 2207
= 2000 - 1768
2,
=
o]0
-
= 1000 - 765
= 384
19 112 . 9 159 94 214 130 204
0
1 2 4 8 16

Number of Servers

12x throughput improvement using 16 nodes

16-node Slash is 8x faster than optimised single node

© Bonaventura Del Monte

Performance of Slash

B Flink over IB B RDMA Partitioning [Slash C++ Single Node
4000
— 3254
=
S 3000 -
= 2207
= 2000 - 1768
2,
=
o]0
-
= 1000 - 765
= 384
19 112 . 9 159 94 214 130 204
0
1 2 4 8 16

Number of Servers

RDMA baseline limited by partitioning speed (CPU-Bound)

Slash is limited by memory speed

© Bonaventura Del Monte

Summary

 SPE design to accelerate streaming workloads using RDMA at rack-scale

* No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box

* Achieve 12x throughput improvement over strongest baseline

« Slash is memory-bound; baseline is bound by partitioning speed

© Bonaventura Del Monte 27

Summary

 SPE design to accelerate streaming workloads using RDMA at rack-scale

* No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box

* Achieve 12x throughput improvement over strongest baseline

« Slash is memory-bound; baseline is bound by partitioning speed @:_,‘. v,
4=
Ol 0 NebulaStream
e iy
“‘#’ﬁ Thank you!
@ b T, 5‘ © Bonaventura Del Monte 28

Backup

Slash

29

Remote Direct Memory Access

Infiniband EDR 100Gbps (12.5 GB/s)
Infiniband HDR 200 Gbps (25 GB/s)
Infiniband NDR 400 Gbps (50 GB/s)

PCIl-Express 3.0 Bandwidth: 984.6 MB/s
per lane (16x: 15.74 GB/s)

PCIl-Express 5.0 Bandwidth: 3.93 GB/s
per lane in each direction (16x: 63 GB/s)

Port

0e PCIl-Express Bus)
= # > PCI-EXx
Controller

L3

M=

Socket

© Bonaventura Del Monte

30

Socked-based vs. RDMA

Kernel-space Networking
Multiple Data Copies

© Bonaventura Del Monte

User-space Networking (low latency)
Zero-copy (low latency)

Enables distributed memory (non coherent)

Two-sided verbs: Send/Recv
One-sided verbs: Read/Write/Atomic

31

Distributed Streaming Query Execution

Partitioning-based Execution

ll

Hash
Partitioning =

llllllll

Shuffler.

Thread-local State Partitions

Disjoint State Partitions

© Bonaventura Del Monte 32

Distributed Streaming Query Execution

Partitioning-based Execution

Hash
Partitioning

Shuffler : : Shuffler

Thread-local State Partitions
Disjoint State Partitions

300

FlinkIB [E RDMA UpPar

DO

-

-
|

Throughput (M rec/s)
oS
-

© Bonaventura Del Monte

112

264
214

159

4 8
Number of Servers

Intel Xeon Gold 5115 @ 2.4 Ghz 10-cores
L1: 32KB L2: 10MB

L3: 13.75MB RAM: 96GB

NIC: Mellanox Connect-X4 EDR 100Gbps

33

When Slash make sense

» Cost(Partitioning) + Cost(Local Computation) > Cost(Partial Computation) +
Cost(Lazy Merge)

» Keyed Aggregation or Joins (Streaming ETL)
* Define State as a CRDT

 New operators need to use our distributed state abstraction
* Network-hungry such as Cross-Product

ML Operators

© Bonaventura Del Monte

34

Where RDMA comes iInto play

Latch-free
1 Update&Lookup

RMW/Scan

'
l
Operator |1
Pipeline [+

Operator

Pipeline

__________k_‘_

Node #1

RDMA-based

LSS In-place Update State Transfer

In-place Update of
Primary Partition

T
LSS Primary Partition 1 : LéS Fragment Partition 1
' '

LSS Fragment

Partition 2 @
LSS Fragment

Partition 3
LSS Fragment

Partition 4

© Bonaventura Del Monte

lLSS Primary Partition 2

LSS Fragment Partition 3

LSS Fragment Partition 4

Operators observe
remote updates

Operator
Pipeline

Operator
Pipeline

35

Cost of RDMA

* Mellanox (now Nvidia) Connect X-6 200Gpbs sold at about 1200%
* Azure RDMA-capable H/HB instances: 800/1600%/mo
 AWS has Elastic Fabric Adapter (Send/Recv): 2180%/mo (m6in.32xlarge)

© Bonaventura Del Monte

36

Large SPE deployments

e Alibaba: 1.5M CPU for Flink (35000 jobs)
e Netflix: 14k nodes with 22k CPU (100s jobs)

© Bonaventura Del Monte

37

Slash Performance

16

16

e8C1

Al

OT

OLT

A%

_______] _______] _______] ________]
_______ | _______ | _______ | ________ |
L0G
cCl
o
_______] _______] _______] _______]
_______ | _______ | _______ | _______ |
VG
69
4
_______] _______] _______] _______]
_______ | _______ | _______ | _______ |

1
_______ . 1

=

S

\

S

™

-
—

(s/o01 N) ndySnoayJ,

E

109¢

4N
L1 1 _______] _______] _______] _______]
ti _______ | _______ | _______ | ________ |
790G
9%
ST
L1 1 _______] _______] _______] _______]
ti _______ | _______ | _______ | ________ |
L6C1
G6
cl
L1 1 _______] _______] _______] _______]
ti _______ | _______ | _______ | ________ |
L16
89

8

E

f=

f=

(s/001 N) mdySnoay,

—

-
—

E

Nexmark Query 8

Nexmark Query 7

38

© Bonaventura Del Monte

Slash Microbenchmarks: COST

CM NB7 YSB

2

11.6x

Throughput (M rec/s)
=

=

L 2 4 8 16 L 2 4 &8 16
Number of Nodes

© Bonaventura Del Monte

'Ei'r

39

Slash Microbenchmarks: Latency

10
10°
— &
o IE %E
— E . = >
2 1()
3.
> 10
= 10°
E 10° .
107 =
-
10!
10/

16 32 064 128 256 5121024
Buffer Size (KB)

© Bonaventura Del Monte

40

E

Slash Microbenchmarks: Node Parallelism

SUT RDMA UpPar Slash
____O8Nodes _ _ _ _ _ ________.
45 - |
“n [
T~ I
an
O |
:30) !
=~ |.___4Nodes ____ ___ |
e [
%D !
= 15 2 Nod | |
= odes | |
= —aT—— | l
I I I
[[[
[[L

2 4 & 10 16 20 32 40
Number of Threads

© Bonaventura Del Monte 41

104+

=

=

SUT

Slash Upfront

Slash Microbenchmarks: Skew

Slash Lazy

o
L
I|III|I

=

Throughput (M rec/s)

=

|||||||
dSA

10!

1=
1 O

0.2 04 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

Skew (Zipfian)

© Bonaventura Del Monte

'Ei'r

42

Slash State Backend Internals

Latch-free
1 Update&Lookup

RMW/Scan

'
l
Operator |1
Pipeline [+

Operator

Pipeline

__________k_‘_

Node #1

Fragment Partition (thesis)
is the Leased Partition (talk)

RDMA-based

LSS In-place Update State Transfer

In-place Update of
Primary Partition

T
LSS Primary Partition 1 : LéS Fragment Partition 1
' '

LSS Fragment

Partition 2 @
LSS Fragment

Partition 3
LSS Fragment

Partition 4

© Bonaventura Del Monte

lLSS Primary Partition 2

LSS Fragment Partition 3

LSS Fragment Partition 4

Operators observe
remote updates

Operator
Pipeline

Operator
Pipeline

43

Anatomy of Slash Partitions

Hash-Index

Leased Partition #1

/
~—

Leased Partition #2

Primary Partition

© Bonaventura Del Monte

'E;I

44

Conflict Free Replicated Data Types

* Inspired by AnnaKVS and FASTER design

* Define a “merge function” f(k, v1, v2) to merge v1 and v2 within the same
window

* Windowed aggregation:
* Average, Sum, Count
e Windowed Join:

» List of segments

© Bonaventura Del Monte

45

RDMA Data Channel details

* Pipelined RDMA Writes of data chunks arranged in a circular queue
 Keep the RNIC well-fed with data
* Async: too little -> low bandwidth; too much -> RNIC cache trashing
* Polling on footer
o Zero-copy

* Credit-based flow control to avoid producer overwhelm consumer

© Bonaventura Del Monte

46

Going beyond rack-scale

o Slash requires a number of RDMA connections quadratic in the num of nodes

 Use Two-sided (Send/Recv) instead of RDMA Write/Read

Kalia et al.: RDMA requires NIC-managed connection state (a Connect-X5 RNIC
drop 50% throughput with 5000 connections = 70 Slash instances)

RNIC SRAM: ~2 MB for connection and data structures, connection state ~375
bytes

Switch to application-managed connection state (datagram)

Requires software Congestion Control (e.qg., rate-based) and achieves 70-92% of
network throughput

© Bonaventura Del Monte 47

RDMA Atomics

 Bound by PCI-Ex RTT as a lock in the RNIC is held until the op is completed
 100s of ns with PCI-Express 3.0
 Should evaluate with PCI-Express 5.0 and newer models?
 Atomic semantics are atomic only among RNICs not CPU

* Consensus in the Network community on avoiding them

© Bonaventura Del Monte

48

Slash internal processing

[4
@

"
"
L 4

Slash State |
Backend
Input Stream Pre- Window o1 Global
Flow /Processing/Assignmen Part'a! ob4
................ Processing.Instance #1.______..
Input Stream Pre- Window
Flow Processing/Assignmen
Processing Instance #2
. J

© Bonaventura Del Monte

Window Post-
riggering/ Processing

Window Post-
riggering/ Processing

49

Slash internal processing

Ready to Process Coroutines

© Bonaventura Del Monte

Worker
Thread

Running

50

Micro-architecture Analysis

+ Speed
Size
. -) . ?
[0
PCIl-Express Bus -cg
L3 Cache =

+ Size
Main-Memory - Speed

© Bonaventura Del Monte

51

Micro-architecture Analysis

Frontend Backend

Fetch and
Decode
HOps

PCIl-Express Bus

............... .

© Bonaventura Del Monte 52

Micro-architecture Analysis

Frontend Backend

. Fetch and] =
Instruction : Memory
Decode . Execute
Cache : Subsystem
uOps .

© Bonaventura Del Monte 53

Micro-architecture Analysis

Frontend : Backend

Complex instructions in L1i decoded in pOps

© Bonaventura Del Monte 54

Micro-architecture Analysis

Frontend Backend

Frontend delivers up to 4 pOps per cycle to backend (Intel)

© Bonaventura Del Monte 55

Micro-architecture Analysis

Frontend Backend

. Fetchand| i | Th

Instruction : b Memory ||}

Decode p—»} Execute

Cache s N Subsystem| L#
uOps N o

Provides data to registers from L1d, L2, LLC, and Main-Memory

© Bonaventura Del Monte 56

Micro-architecture Analysis

Frontend Stalls Frontend Backend
Instruction :

Cache Miss . Fetch and|
Instruction : Memory
Decode | : | Execute
Branch Cache 1Ops 5 Subsystem

Mis-prediction

© Bonaventura Del Monte 57

Micro-architecture Analysis

Frontend Stalls
Instruction
Cache Miss

Frontend Backend

. Fetch and] :
Instruction : Memory
Decode . Execute
Cache . Subsystem
uOps :

Cor

Memory Stalls

Data Cache Miss

Branch L1-1L2-L3-TLB

Mis-prediction

e

© Bonaventura Del Monte 58

Micro-architecture Analysis

Frontend Stalls Frontend Backend Memory Stalls

Instruction
Cache Miss :
Instruction thecg‘ozr;d Memory Data Cache Miss
Branch Cache 10pS Subsystem L1-L2-L3-TLB

Mis-prediction
e

Cor

Hardware Performance Counters help
us understand CPU performance

© Bonaventura Del Monte 59

Slash Performance Gain Explained

100 -

B Bad Speculation

M Core Bound

M Frontend Bound
Memory Bound
Retired

“w Exec. Time (%)
N (3]
o

25

RDMA UpPar RDMA UpPar Slash
(Send) (Recv)

© Bonaventura Del Monte

'Ei‘['

60

Slash Performance Gain Explained

100 -

75 -

B Bad Speculation

M Core Bound

M Frontend Bound
Memory Bound
Retired

Exec. Time (%)
N
o

25

RDMA UpPar RDMA UpPar Slash
(Send) (Recv)

Receiver of RDMA UpPar spin waits
on data from the sender

© Bonaventura Del Monte

'Ei‘['

61

'Ei‘['

Slash Performance Gain Explained

100 -

RDMA UpPar limited by
partitioning speed (CPU-Bound)

75 -

B Bad Speculation

M Core Bound

M Frontend Bound
Memory Bound
Retired

Exec. Time (%)
N
o

25

RDMA UpPar RDMA UpPar Slash
(Send) (Recv)

Receiver of RDMA UpPar spin waits
on data from the sender

© Bonaventura Del Monte 62

Slash Performance Gain Explained

Exec. Time (%)

100
. RDMA UpPar limited by
\ partitioning speed (CPU-Bound)
B Bad Speculation .
50- } = coreBownd Slash is bound by memory speed
' Memory Bound
i Retired
' . Instr./|Cyc./
25 - f tPC Rec. | Rec.
" RDMA|0.6| 166 | 274
UpPar|0.4| 78 | 276
Slash | 0.9 42 53
0

RDMA UpPar RDMA UpPar Slash

(Send) (Recv)

Slash waits for data to be materialized for processing

© Bonaventura Del Monte 63

