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Disclaimer

The work behind and content of this presentation
were carried out while | was employed at TU Berlin

The content and opinions expressed In this talk
do not represent Observe Inc.
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What is this talk about?
Enable robust scale-out performance for stateful
streaming queries using high-speed networks
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Stateful Streaming Analytics at Scale
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Stateful Streaming Analytics at Scale

state size 1-10 TB

- Epg Stream Stream
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Stream Processing with high-speed network
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Stream Processing with high-speed network

Hash

Partitioning

Data partitioning is a network intensive
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Network

High-speed Networking
Close to memory bandwidth
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Stream Processing with high-speed network

Hash
Partitioning
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Stream Processing with high-speed network
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Finding the bottleneck
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Slash: network-conscious SPE
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Slash: network-conscious SPE
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Partitioning
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Primary Partitions: disjoint

shards of operator state
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Slash: network-conscious SPE

Primary Partitions: disjoint
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Slash: network-conscious SPE

.......................................

R P S o Primary Partitions: disjoint

Primary [ oase d@ //;’ar/,/;?so n% shards of operator state
: Partitio - | Partition n
:Server 1 - I : | : Server 2 Epoch-based synchro-
Hash : QQ | Pl nﬂ nisation: to merge leased
Par’[i’[iOﬂiﬂg - 2 teessssssssspssssssssssssasgesssssssns N\ ‘tsssssssssssssssssssssssssaffssssssssans and primary partitions

...........................................................................

Primary Leased @ Primary
. Partitio PartitionT * : | Partitio o
i i - Leased :
:Server 3 - o Partitio Server 4:

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Replace partitioning with eager computation of

partial states followed by lazy merge

© Bonaventura Del Monte 22



Slash: network-conscious SPE
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Slash: network-conscious SPE

Pipelined RDMA Writes
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Performance of Slash
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12x throughput improvement using 16 nodes

16-node Slash is 8x faster than optimised single node
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Performance of Slash
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RDMA baseline limited by partitioning speed (CPU-Bound)

Slash is limited by memory speed
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Summary

 SPE design to accelerate streaming workloads using RDMA at rack-scale

* No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box

* Achieve 12x throughput improvement over strongest baseline

« Slash is memory-bound; baseline is bound by partitioning speed
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Summary
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Remote Direct Memory Access

Infiniband EDR 100Gbps (12.5 GB/s)
Infiniband HDR 200 Gbps (25 GB/s)
Infiniband NDR 400 Gbps (50 GB/s)

PCIl-Express 3.0 Bandwidth: 984.6 MB/s
per lane (16x: 15.74 GB/s)

PCIl-Express 5.0 Bandwidth: 3.93 GB/s
per lane in each direction (16x: 63 GB/s)

Port

0e PCIl-Express Bus )
= # ...................... > PCI-EXx
Controller

L3

M=

Socket
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Socked-based vs. RDMA

Kernel-space Networking
Multiple Data Copies

© Bonaventura Del Monte

User-space Networking (low latency)
Zero-copy (low latency)

Enables distributed memory (non coherent)

Two-sided verbs: Send/Recv
One-sided verbs: Read/Write/Atomic
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Distributed Streaming Query Execution

Partitioning-based Execution
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© Bonaventura Del Monte 32



Distributed Streaming Query Execution

Partitioning-based Execution
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When Slash make sense

» Cost(Partitioning) + Cost(Local Computation) > Cost(Partial Computation) +
Cost(Lazy Merge)

» Keyed Aggregation or Joins (Streaming ETL)
* Define State as a CRDT

 New operators need to use our distributed state abstraction
* Network-hungry such as Cross-Product

ML Operators

© Bonaventura Del Monte
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Where RDMA comes iInto play

Latch-free
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Pipeline
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Cost of RDMA

* Mellanox (now Nvidia) Connect X-6 200Gpbs sold at about 1200%
* Azure RDMA-capable H/HB instances: 800/1600%/mo
 AWS has Elastic Fabric Adapter (Send/Recv): 2180%/mo (m6in.32xlarge)

© Bonaventura Del Monte
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Large SPE deployments

e Alibaba: 1.5M CPU for Flink (35000 jobs)
e Netflix: 14k nodes with 22k CPU (100s jobs)

© Bonaventura Del Monte
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Slash Performance
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Slash Microbenchmarks: COST
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Slash Microbenchmarks: Latency
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Slash Microbenchmarks: Node Parallelism
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Slash State Backend Internals
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Anatomy of Slash Partitions

Hash-Index

Leased Partition #1

/
~—

Leased Partition #2

Primary Partition
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Conflict Free Replicated Data Types

* Inspired by AnnaKVS and FASTER design

* Define a “merge function” f(k, v1, v2) to merge v1 and v2 within the same
window

* Windowed aggregation:
* Average, Sum, Count
e Windowed Join:

» List of segments

© Bonaventura Del Monte
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RDMA Data Channel details

* Pipelined RDMA Writes of data chunks arranged in a circular queue
 Keep the RNIC well-fed with data
* Async: too little -> low bandwidth; too much -> RNIC cache trashing
* Polling on footer
o Zero-copy

* Credit-based flow control to avoid producer overwhelm consumer

© Bonaventura Del Monte
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Going beyond rack-scale

o Slash requires a number of RDMA connections quadratic in the num of nodes

 Use Two-sided (Send/Recv) instead of RDMA Write/Read

Kalia et al.: RDMA requires NIC-managed connection state (a Connect-X5 RNIC
drop 50% throughput with 5000 connections = 70 Slash instances)

RNIC SRAM: ~2 MB for connection and data structures, connection state ~375
bytes

Switch to application-managed connection state (datagram)

Requires software Congestion Control (e.qg., rate-based) and achieves 70-92% of
network throughput

© Bonaventura Del Monte 47



RDMA Atomics

 Bound by PCI-Ex RTT as a lock in the RNIC is held until the op is completed
 100s of ns with PCI-Express 3.0
 Should evaluate with PCI-Express 5.0 and newer models?
 Atomic semantics are atomic only among RNICs not CPU

* Consensus in the Network community on avoiding them

© Bonaventura Del Monte
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Slash internal processing
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Slash internal processing

Ready to Process Coroutines

© Bonaventura Del Monte

Worker
Thread

Running
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Micro-architecture Analysis

+ Speed
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Micro-architecture Analysis

Frontend Backend

Fetch and
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© Bonaventura Del Monte 52



Micro-architecture Analysis

Frontend Backend

. Fetch and] =
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Cache : Subsystem
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Micro-architecture Analysis

Frontend : Backend

Complex instructions in L1i decoded in pOps
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Micro-architecture Analysis

Frontend Backend

Frontend delivers up to 4 pOps per cycle to backend (Intel)
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Micro-architecture Analysis

Frontend Backend

. Fetchand| i | Th

Instruction : b Memory ||}

Decode p—»} Execute

Cache s N Subsystem| L#
uOps N o

Provides data to registers from L1d, L2, LLC, and Main-Memory
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Micro-architecture Analysis

Frontend Stalls Frontend Backend
Instruction :
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Instruction : Memory
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Branch Cache 1Ops 5 Subsystem

Mis-prediction
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Micro-architecture Analysis

Frontend Stalls
Instruction
Cache Miss
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Micro-architecture Analysis

Frontend Stalls Frontend Backend Memory Stalls

Instruction
Cache Miss :
Instruction thecg‘ozr;d Memory Data Cache Miss
Branch Cache 10pS Subsystem L1-L2-L3-TLB

Mis-prediction
e

Cor

Hardware Performance Counters help
us understand CPU performance

© Bonaventura Del Monte 59



Slash Performance Gain Explained
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Slash Performance Gain Explained
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Slash Performance Gain Explained
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Slash Performance Gain Explained

Exec. Time (%)

100
. RDMA UpPar limited by
\ partitioning speed (CPU-Bound)
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50- } = coreBownd Slash is bound by memory speed
' Memory Bound
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Slash waits for data to be materialized for processing
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