
2020 ACM SIGMOD Conference 

Rethinking Stateful Stream 
Processing with RDMA
Bonaventura Del Monte - Steffen Zeuch - Tilmann Rabl - Volker Markl



© Bonaventura Del Monte

Disclaimer
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The work behind and content of this presentation 
were carried out while I was employed at TU Berlin 

The content and opinions expressed in this talk 
 do not represent Observe Inc. 
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What is this talk about?
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Enable robust scale-out performance for stateful 
streaming queries using high-speed networks
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Stream Processing with high-speed network
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Stream Processing with high-speed network
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Stream Processing with high-speed network
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Stream Processing with high-speed network
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Simply using a high-speed network is not enough 
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Finding the bottleneck
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Finding the bottleneck
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Data partitioning is a bottleneck  
already using two nodes
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Slash: network-conscious SPE
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Performance of Slash
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12x throughput improvement using 16 nodes 
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Performance of Slash
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RDMA baseline limited by partitioning speed (CPU-Bound)

Slash is limited by memory speed
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Summary
• SPE design to accelerate streaming workloads using RDMA at rack-scale


• No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box


• Achieve 12x throughput improvement over strongest baseline


• Slash is memory-bound; baseline is bound by partitioning speed

27
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• SPE design to accelerate streaming workloads using RDMA at rack-scale


• No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box


• Achieve 12x throughput improvement over strongest baseline


• Slash is memory-bound; baseline is bound by partitioning speed
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Remote Direct Memory Access

30

Socket

L3PCI-Ex 
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PCI-Express 3.0 Bandwidth: 984.6 MB/s 
per lane (16x: 15.74 GB/s)

Port
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Infiniband HDR 200 Gbps (25 GB/s)

Infiniband NDR 400 Gbps (50 GB/s) 

PCI-Express 5.0 Bandwidth: 3.93 GB/s 
per lane in each direction (16x: 63 GB/s)
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Socked-based vs. RDMA
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User-space Networking (low latency)
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Enables distributed memory (non coherent)
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Distributed Streaming Query Execution
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Distributed Streaming Query Execution
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When Slash make sense

• Cost(Partitioning) + Cost(Local Computation) > Cost(Partial Computation)  + 
Cost(Lazy Merge)


• Keyed Aggregation or Joins (Streaming ETL)


• Define State as a CRDT


• New operators need to use our distributed state abstraction 


• Network-hungry such as Cross-Product 


• ML Operators

34
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Where RDMA comes into play
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Cost of RDMA

• Mellanox (now Nvidia) Connect X-6 200Gpbs sold at about 1200$


• Azure RDMA-capable H/HB instances: 800/1600$/mo


• AWS has Elastic Fabric Adapter (Send/Recv): 2180$/mo (m6in.32xlarge)

36
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Large SPE deployments

• Alibaba: 1.5M CPU for Flink (35000 jobs)


• Netflix: 14k nodes with 22k CPU (100s jobs)

37
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Slash Performance
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Slash Microbenchmarks: COST
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Slash Microbenchmarks: Latency
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Slash Microbenchmarks: Node Parallelism
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Slash Microbenchmarks: Skew

42

RO
Y

SB

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

101

102

103

104

101

102

103

104

Skew (Zipfian)

Th
ro

ug
hp

ut
(M

re
c/

s)

SUT Slash Upfront Slash Lazy



© Bonaventura Del Monte

Slash State Backend Internals
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Leased Partition #1

Anatomy of Slash Partitions
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Conflict Free Replicated Data Types

• Inspired by AnnaKVS and FASTER design


• Define a “merge function” f(k, v1, v2) to merge v1 and v2 within the same 
window


• Windowed aggregation:


• Average, Sum, Count


• Windowed Join:


• List of segments

45
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RDMA Data Channel details

• Pipelined RDMA Writes of data chunks arranged in a circular queue


• Keep the RNIC well-fed with data


• Async: too little -> low bandwidth; too much -> RNIC cache trashing 


• Polling on footer


• Zero-copy


• Credit-based flow control to avoid producer overwhelm consumer

46
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Going beyond rack-scale

• Slash requires a number of RDMA connections quadratic in the num of nodes


• Use Two-sided (Send/Recv) instead of RDMA Write/Read


• Kalia et al.: RDMA requires NIC-managed connection state (a Connect-X5 RNIC 
drop 50% throughput with 5000 connections = 70 Slash instances) 


• RNIC SRAM: ~2 MB for connection and data structures, connection state ~375 
bytes


• Switch to application-managed connection state (datagram)


• Requires software Congestion Control (e.g., rate-based) and achieves 70-92% of 
network throughput

47
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RDMA Atomics

• Bound by PCI-Ex RTT as a lock in the RNIC is held until the op is completed


• 100s of ns with PCI-Express 3.0


• Should evaluate with PCI-Express 5.0 and newer models?


• Atomic semantics are atomic only among RNICs not CPU


• Consensus in the Network community on avoiding them 

48
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Slash internal processing
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Slash internal processing
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Micro-architecture Analysis
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CPU

Micro-architecture Analysis
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Micro-architecture Analysis
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Micro-architecture Analysis
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Micro-architecture Analysis
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Micro-architecture Analysis
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Micro-architecture Analysis
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Micro-architecture Analysis
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Micro-architecture Analysis
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Slash Performance Gain Explained
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Slash Performance Gain Explained
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Slash Performance Gain Explained
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Slash Performance Gain Explained
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