
Bonaventura Del Monte

5 December 2022

Hardware-Conscious Techniques
for Efficient and Reliable Stateful
Stream Processing
Ph.D. Thesis Defense

Stateful Streaming Analytics

2

Stream
Processing

Engine

Stateful Streaming Analytics

3

Stream
Processing

Engine

Realtime
Result

\

Stateful Streaming Analytics

4

Stream
Processing

Engine

Operator State: mutable dataset of (k,v)

Realtime
Result

\

Stateful Streaming Analytics

5

Stream
Processing

Engine

Windowed Aggregations, Windowed
Joins, or Machine Learning Tasks

Realtime
Result

\

Operator State: mutable dataset of (k,v)

Stateful Streaming Analytics at Scale

6

billions of events

high cardinality

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

7

billions of events

high cardinality data rate 1-10 GB/s

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

8

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

9

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stateful Streaming Analytics at Scale

10

billions of events

high cardinality

state size 1-10 TB

We need efficient and reliable
stateful stream processing

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Sustain high-throughput
stream processing
with low-latency

Despite failures and
data rate fluctuation

data rate 1-10 GB/s

Current scale-out SPE architectures

11

Enable efficient and reliable stateful stream processing
but by scaling out on commodity hardware

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Server

ServerServer

Server

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Server

ServerServer

Server…

Current scale-out SPE architectures

12

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Server

ServerServer

Server

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Server

ServerServer

Server…

Enable efficient and reliable stateful stream processing
but by scaling out on commodity hardware

Current scale-out SPE architectures

13

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Server

ServerServer

Server

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Server

ServerServer

Server…

Enable efficient and reliable stateful stream processing
but by scaling out on commodity hardware

Una↵ordable

Desired Performance

Number of Hardware Resources

E
x
p
e
c
t
e
d
P
e
r
fo
r
m
a
n
c
e

Scale-out SPEs

Current scale-out SPE architectures

14

• Scale-out on commodity hardware
• Add more compute resource to meet desired performance

Una↵ordable

Desired Performance

Number of Hardware Resources

E
x
p
e
c
t
e
d
P
e
r
fo
r
m
a
n
c
e

Scale-out SPEs

Current scale-out SPE architectures

15

• Scale-out on commodity hardware
• Add more compute resource to meet desired performance
• Cannot scale out infinitely using finite resources

Una↵ordable

Desired Performance

Number of Hardware Resources

E
x
p
e
c
t
e
d
P
e
r
fo
r
m
a
n
c
e

Scale-out SPEs

Thesis Goal

16

Enable efficient and reliable stateful stream
processing using hardware more efficiently

Una↵ordable

Desired Performance

Number of Hardware Resources

E
x
p
e
c
t
e
d
P
e
r
fo
r
m
a
n
c
e

Ideal Scale-out SPEs

Rethinking the commodity assumption

17

Server

Stream
Processing

Engine
Server

 Multi-core CPUs
 Large Cache Hierarchy
100s GB Main-Memory

Compute
Stream

Processing
Engine

Rethinking the commodity assumption

18

Stream
Processing

Engine
Server

Stream
Processing

Engine Server

 Multi-core CPUs
 Large Cache Hierarchy
100s GB Main-Memory

Compute

 High-speed Networking
 Close to memory bandwidth
Faster than 10Gbps Ethernet

Network

Rethinking the commodity assumption

19

Stream
Processing

Engine Server

Stream
Processing

Engine
Server

Stream
Processing

Engine Server

 Flexible Provisioning
 Reconfiguration

 Multi-core CPUs
 Large Cache Hierarchy
100s GB Main-Memory

Compute

Elasticity

 High-speed Networking
 Close to memory bandwidth
Faster than 10Gbps Ethernet

Network

SPEs don’t scale with the hardware capabilities

20

Query Processing

1

10

100

420 Memory Bandwidth

6.25
3.6

0.26

T
h
ro
u
gh

p
u
t

(M
re
co
rd
s/
s)

Flink Spark Storm

SPEs don’t scale with the hardware capabilities

21

Query Processing Query Reconfiguration

1
1

100

200

300
257

State Size (TB)

L
at
en

cy
(s
)

Flink

1

10

100

420 Memory Bandwidth

6.25
3.6

0.26

T
h
ro
u
gh

p
u
t

(M
re
co
rd
s/
s)

Flink Spark Storm

SPEs don’t scale with the hardware capabilities

22

Problem: Hardware-oblivious SPE design does not enable
efficient and reliable stateful stream processing

Query Processing Query Reconfiguration

1
1

100

200

300
257

State Size (TB)

L
at
en

cy
(s
)

Flink

1

10

100

420 Memory Bandwidth

6.25
3.6

0.26

T
h
ro
u
gh

p
u
t

(M
re
co
rd
s/
s)

Flink Spark Storm

Challenges: designing hardware-conscious SPEs

23

Stream
Processing

Engine Server

Stream
Processing

Engine Stream Processing Engine

Query Processing
Runtime

Distributed Dataflow
Runtime

State Management
Runtime

Challenges: designing hardware-conscious SPEs

24

Stream
Processing

Engine Server

Stream
Processing

Engine

SPEs are CPU-Bound with
 high-speed networks

Inefficient Query
Execution

Inefficient Memory
Access Patterns

Stream Processing Engine

Query Processing
Runtime

Distributed Dataflow
Runtime

State Management
Runtime

Fast Slow

Challenges: designing hardware-conscious SPEs

25

Stream
Processing

Engine Server

Stream
Processing

Engine Stream Processing Engine

Query Processing
Runtime

Distributed Dataflow
Runtime

SPEs cannot fully use high-speed
networks to scale-out

Expensive Data
Shuffling

OS-Managed
Networking

State Management
Runtime

SPEs are CPU-Bound with
high-speed networks

Fast
Slow

Challenges: designing hardware-conscious SPEs

26

Stream
Processing

Engine Server

Stream
Processing

Engine Stream Processing Engine

Query Processing
Runtime

Distributed Dataflow
Runtime

State Management
Runtime

Large state causes a bottleneck for
 on-the-fly query reconfiguration

Processing & Network
Overhead

Dataflow Computation
Consistency

SPEs cannot fully use
high-speed networks

SPEs are CPU-Bound with
high-speed networks

Fast Slow

Thesis Solution

27

Adopt hardware-conscious SPE design to enable
efficient and reliable stateful stream processing

Query Processing Query Reconfiguration

1
1

100

200

300
257

5

State Size (TB)

L
at
en
cy

(s
)

Flink Goal

1

10

100

420 Memory Bandwidth

6.25
3.6

0.26

384

T
h
ro
u
gh

p
u
t

(M
re
co
rd
s/
s)

Flink Spark Storm Goal
Fast

Fast

Fast

Fast

ThesisThesis

Contributions: Hardware-conscious techniques for SPEs

28

E&A PVLDB 2019

Understand Stream
Processing Performance on

Modern Hardware

SPEs are CPU-Bound with
high-speed networks

Contributions: Hardware-conscious techniques for SPEs

29

E&A PVLDB 2019

Understand Stream
Processing Performance on

Modern Hardware

SPEs are CPU-Bound with
high-speed networks

SIGMOD 2022

SPEs cannot fully use high-
speed networks to scale-out

Efficient Scale-out
Processing with

High-speed Networks

Contributions: Hardware-conscious techniques for SPEs

30

E&A PVLDB 2019

Understand Stream
Processing Performance on

Modern Hardware

SPEs are CPU-Bound with
high-speed networks

SIGMOD 2022

SPEs cannot fully use high-
speed networks to scale-out

SIGMOD 2020

Large state is a bottleneck for
on-the-fly query reconfiguration

Efficient Scale-out
Processing with

High-speed Networks
Reliable Management of

Very Large Operator State

Agenda

31

E&A PVLDB 2019

Understand Stream
Processing Performance on

Modern Hardware

SIGMOD 2022

Efficient Scale-out
Processing with

High-speed Networks

SIGMOD 2020

Reliable Management of
Very Large Operator State

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

1 2 3

Executing streaming queries on SPEs

32

σ π ΓSource Sink

Interpretation-based Query Execution

pushP C

pushP C

Upfront Partitioning

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Executing streaming queries on SPEs

33

Main-memory as “fast-network”

Yahoo! Streaming Benchmark

Intel i7 6700K @ 4 Ghz
L1: 32KB L2: 256 KB L3: 8MB
RAM: 32 GB

0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3T
h
ro
u
gh

p
u
t
(M

re
co
rd
s/
s) Flink

Spark
Storm

Executing streaming queries on SPEs

34

Handwritten Java: improvement up to 3.8x

0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3
24

T
h
ro
u
gh

p
u
t
(M

re
co
rd
s/
s) Flink

Spark
Storm
Java: UP

Executing streaming queries on SPEs

35

Handwritten Java: improvement up to 3.8x

Existing scale-up SPE: improvement up to 3x

0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3
24

71.2
23

T
h
ro
u
gh

p
u
t
(M

re
co
rd
s/
s) Flink

Spark
Storm
Java: UP
Streambox
Saber

Executing streaming queries on SPEs

36

Handwritten Java: improvement up to 3.8x

Existing scale-up SPE: improvement up to 3x

Handwritten C++: improvement up to 4x

0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3
24

71.2
23

288

T
h
ro
u
gh

p
u
t
(M

re
co
rd
s/
s) Flink

Spark
Storm
Java: UP
Streambox
Saber
C++: UP

Proposed changes for scale-up design

37

Late Merge (LM)

Operator Parallelization strategies

pullP C

P Cpull

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Compute and merge partial
states without data shuffling

Proposed changes for scale-up design

38

Late Merge (LM)

Operator Parallelization strategies

pullP C

P Cpull

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Compute and merge partial
states without data shuffling

Tuple L1 L2 2⋅L2 L3/2 L30102030
Memory Bandwidth

Buffer Size

Th
ro

ug
hp

ut
(G

B/
s) Folly

Moody
MemFence
TBB
Boost
STL Queue
STL List
Java Queue

Upfront Partitioning using queues does not achieve
full bandwidth even when batching

Proposed changes for scale-up design

39

Operator Parallelization strategies

pullP C

P Cpull

Global Merge (GM) Late Merge (LM)

pullP C

P Cpull

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Parallelization: GM
or LM instead of

Upfront Partitioning

Compute and merge partial
states without data shuffling

Proposed changes for scale-up design

40

Operator Parallelization strategies

pullP C

P Cpull

Global Merge (GM) Late Merge (LM)

pullP C

P Cpull

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

σ,π,ΓSource Sink

Compilation-based Query Execution

Enable efficient data passing
and code invocation Parallelization: GM

or LM instead of
Upfront Partitioning

Hardware-tailored
Query Compilation for

Stream Processing

Compute and merge partial
states without data shuffling

Proposed changes for scale-up design

41

Operator Parallelization strategies

pullP C

P Cpull

Global Merge (GM) Late Merge (LM)

pullP C

P Cpull

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

Input
Stream

Output
Stream

Data
Flow

StateConsumerProducer

σ,π,ΓSource Sink

Compilation-based Query Execution

Enable efficient data passing
and code invocation Parallelization: GM

or LM instead of
Upfront Partitioning

Hardware-tailored
Query Compilation for

Stream Processing

Compute and merge partial
states without data shuffling

Overall efficient memory access patterns

Executing streaming queries on SPEs

42

0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3 24
71.2

23

288

384 382

35.3 33.8

T
h
ro
u
gh

p
u
t(
M

re
co
rd
s/
s)

Flink
Spark
Storm
Java: UP
Streambox
Saber
C++: UP
C++: LM
C++: GM
Java: LM
Java: GM

Parallelization: GM
or LM instead of

Upfront Partitioning

Hardware-tailored
Query Compilation for

Stream Processing

Avoid Managed
Runtime (JVM)

C++ LM/GM achieve higher processing throughput

Scale-out Java

UP

Scale-up C++

UP

C++

LM/GM

Java

LM/GM

Scale-up is indeed better

43

Proposed
1 Node

Flink
1 Node

Flink
2 Nodes

Flink
4 Nodes

Flink
8 Nodes

Flink
16 Nodes

100

101

102

103 382

4.1 6 8.2 8.2 8.2

354

1.3 1.9 2.9 4.6 6.5

331

2.5
4.3 6.9 7.4 7.4

T
h
ro
u
gh

p
u
t

(M
R
ec
or
d
s/
s) YSB LRB NYT

Increasing node parallelism does not help

Summary

• SPEs are CPU-Bound: they need design changes to exploit modern
hardware efficiently

• Propose hardware-tailored query compilation and LM/GM operator
parallelization to scale-up stateful streaming queries

• Two orders of magnitude throughput improvement are possible

44

Agenda

45

E&A PVLDB 2019

Understand Stream
Processing Performance on

Modern Hardware

SIGMOD 2022 SIGMOD 2020

Reliable Management of
Very Large Operator State

Efficient Scale-out
Processing with

High-speed Networks

SPEs are CPU-Bound SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

1 2 3

SPEs with high-speed network

46

Hash
Partitioning

P

P
C

C

P
C

C

SPEs with high-speed network

47

112

42

159

53

214

94

264

130

2 4 8 16
0

100

200

300

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

FlinkIB RDMA UpPar

Intel Xeon Gold 5115 @ 2.4 Ghz 10-cores
RAM: 96GB
RNIC: Mellanox Connect-X4 EDR 100Gbps

Hash
Partitioning

P

P
C

C

P
C

C

112

42

159

53

214

94

264

130

2 4 8 16
0

100

200

300

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning

SPEs with high-speed network

48

Simply using a high-speed network is not enough

-3.4x

-9.0x

-2.4x

-7.3x

-1.8x

-4.1x

-1.5x

-3.0x

1 2 4 8 16
0

100

200

300

400

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning C++ Single Node

Finding the bottleneck

49

Network Bandwidth

Network Bandwidth

8 16 32 64 128 256 512 1024

3

6

9

12

15

3

6

9

12

15

Bu↵er Size (KB)

T
h
ro
u
gh

p
u
t
(G

B
/s
) Data partitioning is a bottleneck

also on two nodes

Partitioning
Servers=2
Threads=10
Partitions=100

No Partitioning
Servers=2
Thread=10

Finding the bottleneck

50

Data partitioning is a bottleneck
also on two nodes

Network Bandwidth

Network Bandwidth

8 16 32 64 128 256 512 1024

3

6

9

12

15

3

6

9

12

15

Bu↵er Size (KB)

T
h
ro
u
gh

p
u
t
(G

B
/s
)

Late Merge and Global Merge using
distributed memory with RDMA

Partitioning
Servers=2
Threads=10
Partitions=100

No Partitioning
Servers=2
Thread=10

Slash: network-conscious SPE

51

Hash
Partitioning

P

P

C

C Slash Distributed State Backend

Primary
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Primary Partitions: disjoint
shards of operator state

Slash: network-conscious SPE

52

Hash
Partitioning

P

P

C

C Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Primary Partitions: disjoint
shards of operator state

Slash: network-conscious SPE

53

Hash
Partitioning

P

P

C

C Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Replace partitioning with eager computation of
partial states followed by lazy merge

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Primary Partitions: disjoint
shards of operator state

Slash: network-conscious SPE

54

Hash
Partitioning

P

P

C

C

Replace partitioning with eager computation of
partial states followed by lazy merge

Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Epoch-based synchro-
nisation: to merge leased

and primary partitions

Primary Partitions: disjoint
shards of operator state

Slash: network-conscious SPE

55

Hash
Partitioning

P

P

C

C

Replace partitioning with eager computation of
partial states followed by lazy merge

Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Epoch-based synchro-
nisation: to merge leased

and primary partitions

Conflict-free
Replicated Data Types:
to solve merge conflicts

Primary Partitions: disjoint
shards of operator state

Slash: network-conscious SPE

56

Replace partitioning with eager computation of
partial states followed by lazy merge

Hash
Partitioning

P

P

C

C

Epoch-based synchro-
nisation: to merge leased

and primary partitions

Conflict-free
Replicated Data Types:
to solve merge conflicts

Pipelined RDMA Writes

Pipelined RDMA Writes: to
transfer state chunks

asynchronously

Slash Distributed State Backend

Primary
Partition

Leased
PartitionP C

Primary
PartitionP C PCPrimary

Partition

PC
Primary
Partition

Server 3

Server 2Server 1

Server 4

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Leased
Partition

Primary Partitions: disjoint
shards of operator state

Performance of Slash

57

12x throughput improvement using 16 nodes

384
765

11242

1768

15953

2207

21494

3254

264130

1 2 4 8 16
0

1000

2000

3000

4000

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

FlinkIB RDMA UpPar Slash C++ Single Node

16-node Slash is 8x faster than optimised single node

384
765

11242

1768

15953

2207

21494

3254

264130

1 2 4 8 16
0

1000

2000

3000

4000

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning Slash C++ Single Node

Performance of Slash

58

RDMA baseline limited by partitioning speed (CPU-Bound)

Slash is limited by memory speed

384
765

11242

1768

15953

2207

21494

3254

264130

1 2 4 8 16
0

1000

2000

3000

4000

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

Flink over IB RDMA Partitioning Slash C++ Single Node

Summary

• SPE design to accelerate streaming workloads using RDMA at rack-scale

• No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box

• Achieve 12x throughput improvement over strongest baseline

• Slash is memory-bound; baseline is bound by partitioning speed

59

Hardware-conscious techniques for SPEs

60

E&A PVLDB 2019

Understand Stream
Processing Performance on

Modern Hardware

SIGMOD 2022

Efficient Scale-out
Processing with

High-speed Networks

SIGMOD 2020

Reliable Management of Very
Large Operator State

SPEs are CPU-Bound SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

1 2 3

Use case for large state

61

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Anything that can go wrong will go wrong

62

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Data Rate
Fluctuations

Failures

Anything that can go wrong will go wrong

63

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

Stream
Processing

Engine

billions of events

high cardinality data rate 1-10 GB/s

state size 1-10 TB

Data Rate
Fluctuations

Failures

Slow query
reconfiguration

leads to high latency
for query processing

Benchmarking reconfiguration with large state

64

Fine-grained
Query Reconfiguration
Support to
Large State via
Checkpoints

Research
Prototypes

Production-ready
SPEs

Benchmarking reconfiguration with large state

65

Fine-grained
Query Reconfiguration
Support to
Large State via
Checkpoints

Research
Prototypes

Production-ready
SPEs

Benchmarking reconfiguration with large state

66

Fine-grained
Query Reconfiguration
Support to
Large State via
Checkpoints

Research
Prototypes

Production-ready
SPEs

Benchmarking reconfiguration with large state

67
7
2

4
6

1
2
1

7
5

2
0
9

O
u
t
-o
f-
M
e
m
o
r
y

2
5
7

O
u
t
-o
f-
M
e
m
o
r
y

250 GB 500 GB 750 GB 1000 GB

0

60

120

180

240

300

State Size

R
e
c
o
n
fi
g
u
r
a
t
io
n
T
im

e
(
s
)

Flink Megaphone

8+1 n1-standard-64 VMs on GCP
16 vCPUs (Intel Xeon 8173M) + 64 GB RAM
750 GB NVMe SSD
2 Gbps per vCPU

Fine-grained
Query Reconfiguration
Support to
Large State via
Checkpoints

Research
Prototypes

Production-ready
SPEs

72
46

121

75

209

257

250 GB 500 GB 750 GB 1000 GB
0

60

120

180

240

300

State Size

R
ec
on

fi
gu

ra
ti
on

T
im

e
(s
)

Flink Megaphone
O

ut-of-M
em

ory

O
ut-of-M

em
ory

Benchmarking reconfiguration with large state

68
7
2

4
6

1
2
1

7
5

2
0
9

O
u
t
-o
f-
M
e
m
o
r
y

2
5
7

O
u
t
-o
f-
M
e
m
o
r
y

250 GB 500 GB 750 GB 1000 GB

0

60

120

180

240

300

State Size

R
e
c
o
n
fi
g
u
r
a
t
io
n
T
im

e
(
s
)

Flink Megaphone

Fine-grained
Query Reconfiguration
Support to
Large State via
Checkpoints

Research
Prototypes

Production-ready
SPEs

72
46

121

75

209

257

250 GB 500 GB 750 GB 1000 GB
0

60

120

180

240

300

State Size

R
ec
on

fi
gu

ra
ti
on

T
im

e
(s
)

Flink Megaphone
O

ut-of-M
em

ory

O
ut-of-M

em
ory

We seek the best of both worlds: fine-grained
query reconfiguration and support to large state

Our solution: Rhino

69

Handover Protocol to reconfigure
running stateful query without halting it

7
2

4
6

1
5

1
2
1

7
5

2
3

2
0
9

O
u
t
-o
f-
M
e
m
o
r
y

4
1

2
5
7

O
u
t
-o
f-
M
e
m
o
r
y

6
7

250 GB 500 GB 750 GB 1000 GB

0

60

120

180

240

300

State Size

R
e
c
o
n
fi
g
u
r
a
t
io
n
T
im

e
(
s
)

Flink Megaphone Rhino

72
46

15

121

75

23

209

41

257

67

250 GB 500 GB 750 GB 1000 GB
0

60

120

180

240

300

State Size

R
ec
on

fi
gu

ra
ti
on

T
im

e
(s
)

Flink Megaphone Rhino

O
ut-of-M

em
ory

O
ut-of-M

em
ory

Rhino: decrement up to 3.8x with 1 TB state

Our solution: Rhino

70
7
2

4

4
6

1
5

1
2
1

5

7
5

2
3

2
0
9

5

O
u
t
-o
f-
M
e
m
o
r
y

4
1

2
5
7

5

O
u
t
-o
f-
M
e
m
o
r
y

6
7

250 GB 500 GB 750 GB 1000 GB

0

60

120

180

240

300

State Size

R
e
c
o
n
fi
g
u
r
a
t
io
n
T
im

e
(
s
)

Flink Megaphone Rhino Rhino+

Handover Protocol to reconfigure
running stateful query without halting it

State Migration Protocol to proactively
and incrementally replicate

operator state among server

72

4

46
15

121

5

75

23

209

5
41

257

5

67

250 GB 500 GB 750 GB 1000 GB
0

60

120

180

240

300

State Size

R
ec
on

fi
gu

ra
ti
on

T
im

e
(s
)

Flink Megaphone Rhino Rhino+

O
ut-of-M

em
ory

O
ut-of-M

em
ory

Our solution: Rhino

71
7
2

4

4
6

1
5

1
2
1

5

7
5

2
3

2
0
9

5

O
u
t
-o
f-
M
e
m
o
r
y

4
1

2
5
7

5

O
u
t
-o
f-
M
e
m
o
r
y

6
7

250 GB 500 GB 750 GB 1000 GB

0

60

120

180

240

300

State Size

R
e
c
o
n
fi
g
u
r
a
t
io
n
T
im

e
(
s
)

Flink Megaphone Rhino Rhino+

Handover Protocol to reconfigure
running stateful query without halting it

State Migration Protocol to proactively
and incrementally replicate

operator state among server

72

4

46
15

121

5

75

23

209

5
41

257

5

67

250 GB 500 GB 750 GB 1000 GB
0

60

120

180

240

300

State Size

R
ec
on

fi
gu

ra
ti
on

T
im

e
(s
)

Flink Megaphone Rhino Rhino+

O
ut-of-M

em
ory

O
ut-of-M

em
ory

Rhino+ reduces reconfiguration time by 3 orders of magnitude in the
presence of TB-sized distributed operator state

Summary

• Remove bottleneck induced by large state migration upon query
reconfiguration

• Three orders of magnitude query reconfiguration time reduction

• Enable continuous SPE operations by supporting fault-tolerance, resource
elasticity, and runtime reconfigurations for running stateful queries

72

Conclusion

73

Hardware-oblivious SPE design results in performance issues

Conclusion

74

SPEs are CPU-Bound with
high-speed networks

Hardware-oblivious SPE design results in performance issues

Conclusion

75

SPEs are CPU-Bound with
high-speed networks

Hardware-oblivious SPE design results in performance issues

Query Compilation &
Late/Global Merge

Fast Fast

Conclusion

76

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Hardware-oblivious SPE design results in performance issues

Query Compilation &
Late/Global Merge

Fast Fast

Conclusion

77

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Hardware-oblivious SPE design results in performance issues

Query Compilation &
Late/Global Merge

Partial State Computation &
Lazy Merge using RDMA

Fast Fast Fast

Fast

Conclusion

78

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

Hardware-oblivious SPE design results in performance issues

Query Compilation &
Late/Global Merge

Partial State Computation &
Lazy Merge using RDMA

Fast Fast Fast

Fast

Conclusion

79

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

Hardware-oblivious SPE design results in performance issues

Fine-grained Query
Reconfiguration & Proactive

State Migration

Query Compilation &
Late/Global Merge

Partial State Computation &
Lazy Merge using RDMA

Fast Fast Fast

Fast
Fast

Hardware-oblivious SPE design results in performance issues

Conclusion

80

Fine-grained Query
Reconfiguration & Proactive

State Migration

Query Compilation &
Late/Global Merge

Partial State Computation &
Lazy Merge using RDMA

Hardware-conscious techniques enable efficient and reliable stateful query execution

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

Fast Fast Fast

Fast
Fast

Hardware-oblivious SPE design results in performance issues

Conclusion

81

Fine-grained Query
Reconfiguration & Proactive

State Migration

Query Compilation &
Late/Global Merge

Partial State Computation &
Lazy Merge using RDMA

Hardware-conscious techniques enable efficient and reliable stateful query execution

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

Hardware-oblivious SPE design results in performance issues

Conclusion

82

Fine-grained Query
Reconfiguration & Proactive

State Migration

Query Compilation &
Late/Global Merge

Partial State Computation &
Lazy Merge using RDMA

Hardware-conscious techniques enable efficient and reliable stateful query execution

SPEs are CPU-Bound with
high-speed networks

SPEs cannot fully use high-
speed networks to scale-out

Large state is a bottleneck for
on-the-fly query reconfiguration

Fast Fast Fast

Fast
Fast

Thank you!

Backup

83

Publications and contributions

• Efficient Scale-up Stateful
Stream Processing @ PVLDB
2019

• Efficient Scale-out Stateful
Stream Processing @ SIGMOD
2022

• Efficient State Management @
SIGMOD 2020

84

• Ph.D. Proposal @ VLDB Ph.D.
Workshop 2017

• State Migration PoC @ BTW
2019

• NebulaStream Platform @ CIDR
2020 & VLIOT 2021

Ph.D. lessons learned

• Research-oriented coursework helps

• I didn’t do that in my M.Sc., had to learn on the way at DIMA

• Idea -> Prototype -> Prove point -> Write paper sections -> Repeat

• Quick validation, paper is written step-by-step, full system at the end

• Don’t ever use different plotting libraries

• ..or you will have lots of fun by the time of your thesis submission/defense

• Check health of your experiment hardware
85

Research Outlook

• Internet-of-Things & Stream Processing Data Management

• Distributed Query Execution, Optimizing Compiler, and State Management

• Fault tolerance, Resource Scheduling/Optimization

• Disaggregated Resources in Datacenter

• Implications on the design of data management systems

• CXL and “Resource Blades”

• Do research closer to “real-world” application needs
86

Backup
Understanding Stream Processing Performance

87

Today’s network speed

88

0

30

60

90

120

150

12.5

100
119.21

D
at
a
R
at
e
(G

B
/s
)

Ethernet 100 Gbit/s
IB NDR 4X Two NICs

DDR4-2666 (6 Ch.)

Micro-architecture Analysis

89

Main-Memory

CPU #0
…

L1

Core #0 Core #1 Core #p

L1

L2 L2

L1

L2

L3 Cache

…

…

+ Speed
- Size

+ Size
- Speed

Tr
ad

e-
off

CPU

Micro-architecture Analysis

90

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3
Main-Memory

CPU #0
…

L1

Core #0 Core #1 Core #p

L1

L2 L2

L1

L2

L3 Cache

…

…

+ Speed
- Size

+ Size
- Speed

Tr
ad

e-
off

Micro-architecture Analysis

91

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Micro-architecture Analysis

92

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Complex instructions in L1i decoded in μOps

Micro-architecture Analysis

93

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend delivers up to 4 μOps per cycle to backend (Intel)

Micro-architecture Analysis

94

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Provides data to registers from L1d, L2, LLC, and Main-Memory

Micro-architecture Analysis

95

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Micro-architecture Analysis

96

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Memory Stalls

Data Cache Miss
L1 · L2 · L3 · TLB

Micro-architecture Analysis

97

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Memory Stalls

Data Cache Miss
L1 · L2 · L3 · TLB

Execution Stalls
Synchronisation

Waiting
Compute

Hardware Performance Counters help
 us understand CPU performance

Inefficiency explained

98

Flink Stream

box

Java

UP

C++

UP

Java

HC

C++

HC

0

20

40

60

80

100
P
er
ce
nt
ag

e
of

T
im

e
FE Bound
Bad Speculation
Retiring
Memory Bound
Core Bound

Large instruction footprint, virtual functions,
(de-)serialisation, and suboptimal data access pattern

Inefficiency explained

99

Large instruction footprint, virtual functions,
(de-)serialisation, and suboptimal data access pattern

Flink Stream

box

Java

UP

C++

UP

Java

HC

C++

HC

0

20

40

60

80

100
P
er
ce
nt
ag

e
of

T
im

e
FE Bound
Bad Speculation
Retiring
Memory Bound
Core Bound

Poor data and code cache locality

When Query-Compilation makes sense
..over Interpretation-based vectorized query execution

• Always performance gain by removing virtual function calls, reducing code
footprint, improves data locality (efficient memory access patterns)

• however, hard to maintain and debug and requires suitable frontend and IR

• UDFs are a problem

• black-box: performance depends on UDF implementation

• look inside the UDF to holistically optimise query: better but how?

• UDFs with restricted semantics?

100

How to architect a streaming query compiler

• Do I need a query compiler?

• Define query language and semantics (embedded, dialect)

• Define IR and what to capture (transformation, side-effects, state)

• Latency of query compilation (full opt, JIT, copy-and-patch)

• Codegen to C++/Rust or LLVM IR or ..?

• Optimizing query compiler? Use live-statistics and keep optimising

101

When LM/GM make sense

• Cost(Partitioning) > Cost(LM or GM)

• LM outperforms GM when partitioning keys follow a skewed distribution

• no conflicts but LM requires multiple merging steps:
Cost(Merging)<Cost(Conflicts)

• GM is suitable with uniform distribution (see Grizzly)

102

Spark DStream Tuning

• reduceByKeyAndWindow and CustomReceiver

• Followed best practices available in 2018

• Had to figure out spark.streaming.receiver.maxRate

• No disk storage or compression

• G1GC

103

Flink Tuning

• Followed best practices available in 2018

• Custom (de-)serializers

• Disable checkpointing

• G1GC

104

Outlook: improve state management

• In-memory hash-tables or LSM-Trees that neglect streaming semantics

• Not even a problem when in JVM due to impedance mismatch with C++ impl.

• Research outlook: consider streaming-aware storage

• Temporal and spatial locality of state access

• Design for modern-hardware: cache-friendly, local storage, remote storage

• Perform GC at window boundaries

• Make fault-tolerant (e.g., Scabbard)
105

Hopscotch Hashing

106

Open Addressing: it uses H neighbouring (consecutive) buckets for each bucket

Invariant: cost of finding item in neighbourhood = cost of finding item in the exact bucket

LRB - Toll and accidents

107

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
0125250375500 Memory Bandwidth

1.4 0.1 0.2 3 79.2 6.5
253

6.6
354

51 2.3

Th
ro

ug
hp

ut
[M

re
co

rd
s/

s]
(a)Flink
(b)Spark
(c)Storm
(d)Java: UP
(e)C++: UP
(f)Java: LM
(g)C++: LM
(h)Java: GM
(i)C++: GM
(j)Streambox
(k)Saber

NYT

108

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
0125250375500

Memory Bandwidth

2 1.3 1.2 56.1
243 102

282
73

331
62.5 22.3

Th
ro

ug
hp

ut
[M

re
co

rd
s/

s]
(a)Flink
(b)Spark
(c)Storm
(d)Java: UP
(e)C++: UP
(f)Java: LM
(g)C++: LM
(h)Java: GM
(i)C++: GM
(j)Streambox
(k)Saber

What are the number of trips and their average distance for the VTS vendor
 per region for rides more than 5 miles over the last two seconds?

Early RDMA Benchmarks

109

1K
B

2K
B

4K
B

8K
B
16K

B
32K

B
64K

B
128

KB
256

KB
512

KB
1M

B
2M

B
4M

B
8M

B
16M

B
024
68 Network Bandwidth

Buffer Size

Th
ro

ug
hp

ut
(G

B/
s)

Java RDMA Read C++ RDMA Read TCP over IB
C++ RDMA Write C++ Send/Receive

020406080100 68 65 37 8.5Th
ro

ug
hp

ut
(M

Re
co

rd
s/

s)

C++ Read Only
C++ With Proc.
Java Read Only
Java With Proc.

020406080100 68 65 37 8.5Th
ro

ug
hp

ut
(M

Re
co

rd
s/

s)

C++ Read Only
C++ With Proc.
Java Read Only
Java With Proc.

Backup
Slash

110

Remote Direct Memory Access

111

Socket

L3PCI-Ex
Controller

PCI-Express Bus

PCI-Express 3.0 Bandwidth: 984.6 MB/s
per lane (16x: 15.74 GB/s)

Port

Infiniband EDR 100Gbps (12.5 GB/s)

Infiniband HDR 200 Gbps (25 GB/s)

Infiniband NDR 400 Gbps (50 GB/s)

PCI-Express 5.0 Bandwidth: 3.93 GB/s
per lane in each direction (16x: 63 GB/s)

Socked-based vs. RDMA

112

User-space Networking (low latency)
Zero-copy (low latency)

Enables distributed memory (non coherent)

ApplicationBuffer

OS

ApplicationBuffer

OS

 Hardware Hardware

ApplicationBuffer

 OSBuffer

 HardwareBuffer

ApplicationBuffer

 OSBuffer

 HardwareBuffer

Kernel-space Networking
Multiple Data Copies

Two-sided verbs: Send/Recv
One-sided verbs: Read/Write/Atomic

Distributed Streaming Query Execution

113

P

P

C C

CC

P

P

Shuffler Shuffler

Shuffler Shuffler

Partitioning-based Execution

Hash
Partitioning

P

P

C

C

Thread-local State Partitions
Disjoint State Partitions

Distributed Streaming Query Execution

114

Partitioning-based Execution

Hash
Partitioning

P

P

C

C

Thread-local State Partitions
Disjoint State Partitions

112

42

159

53

214

94

264

130

2 4 8 16
0

100

200

300

Number of Servers

T
h
ro
u
gh

p
u
t
(M

re
c/
s)

FlinkIB RDMA UpPar

Intel Xeon Gold 5115 @ 2.4 Ghz 10-cores
L1: 32KB L2: 10MB
L3: 13.75MB RAM: 96GB
NIC: Mellanox Connect-X4 EDR 100Gbps

P

P

C C

CC

P

P

Shuffler Shuffler

Shuffler Shuffler

When Slash make sense

• Cost(Partitioning) + Cost(Local Computation) > Cost(Partial Computation) +
Cost(Lazy Merge)

• Keyed Aggregation or Joins (Streaming ETL)

• Define State as a CRDT

• New operators need to use our distributed state abstraction

• Network-hungry such as Cross-Product

• ML Operators

115

Where RDMA comes into play

116

Node 4
Node 3

Node 2

Node #1

Hash
Index

Operator
Pipeline

Operator
Pipeline

LSS Fragment
Partition 2

Hash
Index

Operator
Pipeline

Operator
Pipeline

RMW/Scan
Latch-free

Update&Lookup LSS In-place Update RDMA-based
State Transfer

In-place Update of
Primary Partition

Operators observe
remote updates

LSS Fragment
Partition 3

LSS Fragment
Partition 4

LSS Fragment Partition 3

LSS Fragment Partition 4

LSS Primary Partition 1 LSS Fragment Partition 1

LSS Primary Partition 2

1 2

3

Cost of RDMA

• Mellanox (now Nvidia) Connect X-6 200Gpbs sold at about 1200$

• Azure RDMA-capable H/HB instances: 800/1600$/mo

• AWS has Elastic Fabric Adapter (Send/Recv): 2180$/mo (m6in.32xlarge)

117

Large SPE deployments

• Alibaba: 1.5M CPU for Flink (35000 jobs)

• Netflix: 14k nodes with 22k CPU (100s jobs)

118

Slash Performance

119

Nexmark Query 7

91
7

68
8

12
97

95
13

20
64

86
18

26
01

11
4

25

2 4 8 16

100

101

102

103

104

Th
ro

ug
hp

ut
(M

re
c/

s)

11
9

41
2

24
7

69
2

50
7

12
3

6

12
83

16
3

10

2 4 8 16

100

101

102

103

104

Th
ro

ug
hp

ut
(M

re
c/

s)

Nexmark Query 8

Slash Microbenchmarks: COST

120

2.
4x

4.
5x 5.
4x

11
.6

x

1.
6x 2.

2x 3.
5x 4.

4x

2.
5x

5.
7x 7.

1x 10
.5

x

CM NB7 YSB

L 2 4 8 16 L 2 4 8 16 L 2 4 8 16
102

103

104

Number of Nodes

Th
ro

ug
hp

ut
(M

re
c/

s)

Slash Microbenchmarks: Latency

121

RD
M

A
U

pPar
Slash

8 16 32 64 128 256 512 1024

100

101

102

103

104

100

101

102

103

104

Buffer Size (KB)

La
te

nc
y

(𝜇s)

Slash Microbenchmarks: Node Parallelism

122

2 Nodes

4 Nodes

8 Nodes

15

30

45

2 4 8 10 16 20 32 40
Number of Threads

Th
ro

ug
hp

ut
(G

B/
s)

SUT RDMA UpPar Slash

Slash Microbenchmarks: Skew

123

RO
Y

SB

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

101

102

103

104

101

102

103

104

Skew (Zipfian)

Th
ro

ug
hp

ut
(M

re
c/

s)

SUT Slash Upfront Slash Lazy

Slash State Backend Internals

124

Node 4
Node 3

Node 2

Node #1

Hash
Index

Operator
Pipeline

Operator
Pipeline

LSS Fragment
Partition 2

Hash
Index

Operator
Pipeline

Operator
Pipeline

RMW/Scan
Latch-free

Update&Lookup LSS In-place Update RDMA-based
State Transfer

In-place Update of
Primary Partition

Operators observe
remote updates

LSS Fragment
Partition 3

LSS Fragment
Partition 4

LSS Fragment Partition 3

LSS Fragment Partition 4

LSS Primary Partition 1 LSS Fragment Partition 1

LSS Primary Partition 2

1 2

3

Fragment Partition (thesis)

 is the Leased Partition (talk)

Leased Partition #1

Anatomy of Slash Partitions

125

Old LSS (R/O, to GC) New LSS (R/W)

Hash-Index

Leased Partition #2

To Sync via
RDMA (R/O LSS)

Primary Partition

Mutable LSS (R/W)

Conflict Free Replicated Data Types

• Inspired by AnnaKVS and FASTER design

• Define a “merge function” f(k, v1, v2) to merge v1 and v2 within the same
window

• Windowed aggregation:

• Average, Sum, Count

• Windowed Join:

• List of segments

126

RDMA Data Channel details

• Pipelined RDMA Writes of data chunks arranged in a circular queue

• Keep the RNIC well-fed with data

• Async: too little -> low bandwidth; too much -> RNIC cache trashing

• Polling on footer

• Zero-copy

• Credit-based flow control to avoid producer overwhelm consumer

127

Going beyond rack-scale

• Slash requires a number of RDMA connections quadratic in the num of nodes

• Use Two-sided (Send/Recv) instead of RDMA Write/Read

• Kalia et al.: RDMA requires NIC-managed connection state (a Connect-X5 RNIC
drop 50% throughput with 5000 connections = 70 Slash instances)

• RNIC SRAM: ~2 MB for connection and data structures, connection state ~375
bytes

• Switch to application-managed connection state (datagram)

• Requires software Congestion Control (e.g., rate-based) and achieves 70-92% of
network throughput

128

RDMA Atomics

• Bound by PCI-Ex RTT as a lock in the RNIC is held until the op is completed

• 100s of ns with PCI-Express 3.0

• Should evaluate with PCI-Express 5.0 and newer models?

• Atomic semantics are atomic only among RNICs not CPU

• Consensus in the Network community on avoiding them

129

Slash internal processing

130

Input Stream
Flow

Pre-
Processing

Window
Assignment Window

Triggering
Post-

Processing

Slash State
Backend

Input Stream
Flow

Pre-
Processing

Window
Assignment

Window
Triggering

Post-
Processing

Partial Global

Processing Instance #1

Processing Instance #2

Filter WindowSource Sink

Slash internal processing

131

RDMARDMA

Worker
Thread

Compute

Ready to Process Coroutines

Running

RDMA Compute ComputeCompute

RDMA

Parked

Micro-architecture Analysis

132

Main-Memory

CPU #0
…

L1

Core #0 Core #1 Core #p

L1

L2 L2

L1

L2

L3 Cache

…

…

+ Speed
- Size

+ Size
- Speed

Tr
ad

e-
off

PCI-Express Bus

CPU

Micro-architecture Analysis

133

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3
Main-Memory

CPU #0
…

L1

Core #0 Core #1 Core #p

L1

L2 L2

L1

L2

L3 Cache

…

…

PCI-Express Bus

Micro-architecture Analysis

134

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Micro-architecture Analysis

135

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Complex instructions in L1i decoded in μOps

Micro-architecture Analysis

136

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend delivers up to 4 μOps per cycle to backend (Intel)

Micro-architecture Analysis

137

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Provides data to registers from L1d, L2, LLC, and Main-Memory

Micro-architecture Analysis

138

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Micro-architecture Analysis

139

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Memory Stalls

Data Cache Miss
L1 · L2 · L3 · TLB

Micro-architecture Analysis

140

CPU

Core

Instruction
Cache

Memory
Subsystem

Fetch and
Decode
μOps

Execute

Frontend Backend

Core #0 Core #1 Core #2 Core #3

Frontend Stalls
Instruction
Cache Miss

Branch
 Mis-prediction

Memory Stalls

Data Cache Miss
L1 · L2 · L3 · TLB

Execution Stalls
Synchronisation

Waiting
Compute

Hardware Performance Counters help
 us understand CPU performance

Slash Performance Gain Explained

141

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Sender of RDMA UpPar is Frontend and Core Bound
Partitioning involves complex code and spin waiting

Slash Performance Gain Explained

142

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Receiver of RDMA UpPar spin waits
on data from the sender

Slash Performance Gain Explained

143

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Receiver of RDMA UpPar spin waits
on data from the sender

RDMA UpPar limited by
partitioning speed (CPU-Bound)

Slash Performance Gain Explained

144

0

25

50

75

100

RDMA UpPar
(Send)

RDMA UpPar
(Recv)

Slash

Ex
ec

. T
im

e
(%

)

Bad Speculation
Core Bound
Frontend Bound
Memory Bound
Retired

Slash waits for data to be materialized for processing

RDMA UpPar limited by
partitioning speed (CPU-Bound)

Slash is bound by memory speed

Backup
Rhino

145

Our solution: Rhino

146

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Handover markers to reconfigure
instances O and T (red state)

 flow in the dataflow along with records

Our solution: Rhino

147

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Handover markers to reconfigure
instances O and T (red state)

 flow in the dataflow along with records

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK
Handover markers reach

operator instances

Our solution: Rhino

148

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Handover markers to reconfigure
instances O and T (red state)

 flow in the dataflow along with records

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK
Handover markers reach

operator instances

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

State and Task Handover
between Origin to Target

Our solution: Rhino

149

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK
Handover markers reach

operator instances

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

State and Task Handover
between Origin to Target

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Operator instances forward handover marker
 and acknowledge reconfiguration completion

Our solution: Rhino

150

Handover Protocol to reconfigure
running stateful query without halting it

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Operator instances forward handover marker
 and acknowledge reconfiguration completion

Correctness based on dataflow
properties: happened-before relation

between markers and records

When to use Rhino

• Cost of restarting query violates SLO

• Cost of proactive state migration is still affordable (compared to original
reconfiguration mechanism of target SPE)

151

Rhino+Spark

• Trigger handover at micro-batch (RDD) boundaries

• Finer granularity: trigger handover at stage-boundaries

• State Migration:

• if state is RDD: replicate RDD incrementally

• if state is in LSM-Tree: take incremental snapshot and use state-centric
replication

152

Consistent hashing with virtual nodes

• Split state of each operator instance into logical
groups based on key

• Consistent hashing reduces (k,v) remapping after
rehashing

153

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Consistent hashing with virtual nodes

• Split state of each operator instance into logical
groups based on key

• Without CH, remapping after rehashing involves
potentially all keys

• CH reduces remapping after rehashing to k/m keys

• CH with virtual nodes remaps only the keys in a
virtual node

154

I

Record

Handover
Marker

Primary
State

Operator
Instance

Upstream
Instance

Downstream
Instance

Data
Channel

Buffered Data
Channel

D

S

State
Replica

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

S1

S2

I

O

T

Handover Manager

State Migration
Completed

Handover
Trigger

1 2

S1

S2

I

O

T

Handover Manager

State Migration
Completed

S1

S2

I

O

T

D1

D2

Handover Manager

State Migration
Completed

State Migration
Completed

State
Migration

Upstream
Channel
Rewiring

3 4

ACK

Types of fault-tolerance for SPEs

• Transactional: MillWheel, each state update/produced record is a transaction

• Lineage: Spark Streaming, track and persistent input/output dependencies

• Checkpointing: Flink, variant of Chandy-Lamport snapshotting algorithm

• Change-log: KafkaStream, persist metadata changeling in commit-log

155

Rhino requirements on host system

• R1: Streaming dataflow paradigm: tuple-at-a-time or BSP

• R2: Consistent hashing with virtual nodes

• R3: Mutable state, need to R/W state

156

Rhino or Megaphone

• State migration in Megaphone is reactive and programmable in DSL

• Megaphone uses a migration operator in the dataflow program

• State migration is proactive to serve further reconfiguration transparently to
end-user

• Rhino pipelines checkpointing and migration

• Rhino has in-band synchronisation: markers flowing alongside data records

• Megaphone uses out-of-band synchronisation: only TimelyDataflow/MillWheel
but costly on SPEs that rely on in-band synchronisation

157

Block-based replication is not enough

158

SERVER #1

WORKER #1

DFS #1
SERVER #2

WORKER #2

DFS #2
SERVER #3

WORKER #3

DFS #3

INSTANCE DFS BLOCK RHINO REPLICA

SERVER #1

WORKER #1

SERVER #2

WORKER #2

SERVER #3

WORKER #3

Block-centric

State-centric

Pipelined State Snapshots for SPEs

159

Source: Carbone et al., State Management in Apache Flink, VLDB’17

End-to-end Evaluation (NBQ8)

160

Mean Min P99

14 16 18 20 22 24 14 16 18 20 22 24 14 16 18 20 22 24
100
101
102
103
104
105
106

Time (minutes)

Pr
oc

es
sin

g
La

te
nc

y
(m

s)

Flink Rhino RhinoDFS

Fault-tolerance

State Size: ~190 GB

Mean Min P99

14 16 18 20 22 24 14 16 18 20 22 24 14 16 18 20 22 24
100
101
102
103
104
105
106

Time (minutes)
Pr

oc
es

sin
g

La
te

nc
y

(m
s)

Flink Rhino RhinoDFS

Vertical Scaling

Mean Min P99

14 16 18 20 22 24 14 16 18 20 22 24 14 16 18 20 22 24
100
101
102
103
104
105
106

Time (minutes)

Pr
oc

es
sin

g
La

te
nc

y
(m

s)

Flink Megaphone Rhino RhinoDFS

Load Balancing

End-to-end Evaluation (NBQ5)

161

Mean Min P99

4 6 8 101214 4 6 8 101214 4 6 8 101214
101

101.5
102

102.5
103

103.5
104

Time (minutes)

Flink Rhino RhinoDFS
Mean Min P99

4 6 8 101214 4 6 8 101214 4 6 8 101214
101

101.5

102

102.5

103

Time (minutes)

Flink Rhino RhinoDFS

Fault-tolerance Vertical Scaling Load Balancing

State Size: ~26 MB

Mean Min P99

4 6 8 10 12 4 6 8 10 12 4 6 8 10 12
100

100.5
101

101.5
102

102.5
103

Time (minutes)

Flink Megaphone Rhino RhinoDFS

End-to-end Evaluation (NBQX)

162

Mean Min P99

6 8 10 12 14 6 8 10 12 14 6 8 10 12 14
103

103.5

104

104.5

105

105.5

Time (minutes)

Flink Rhino RhinoDFS
Mean Min P99

8 10 12 14 16 18 8 10 12 14 16 18 8 10 12 14 16 18
102

103

104

105

106

Time (minutes)

Flink Rhino RhinoDFS

Fault-tolerance Vertical Scaling Load Balancing

State Size: ~180 GB

Mean Min P99

10 12 14 16 18 10 12 14 16 18 10 12 14 16 18
102

103

104

105

106

Time (minutes)

Flink Megaphone Rhino RhinoDFS

Resource Utilisation (NBQ8)

163

25

50

75

100

2 4 6 8 10 12 14 16 18 20 22 24
Time (min)

CP
U

U
sa

ge
(%

)

Flink Megaphone Rhino

128

256

384

512

2 4 6 8 10 12 14 16 18 20 22 24
Time

M
em

or
y

U
sa

ge
(G

B)

Flink Megaphone Rhino

Resource Utilisation (NBQ8)

164
In

O
ut

2 4 6 8 10 12 14 16 18 20 22 24

1
2
3
4
5
6

1
2
3
4
5
6

Time

N
et

wo
rk

Th
ro

ug
hp

ut
(G

B/
se

c)

Flink Megaphone Rhino
Read

W
rite

2 4 6 8 10 12 14 16 18 20 22 24

1
2
3
4
5

5
10
15
20
25
30

Time

D
isk

Th
ro

ug
hp

ut
(G

B/
se

c)

Flink Megaphone Rhino

Fluctuating Data Rate

165

Mean Min P99

8 10 12 14 16 18 8 10 12 14 16 18 8 10 12 14 16 18
100

101

102

103

104

105

106

Time (minutes)

Pr
oc

es
sin

g
La

te
nc

y
(m

s)

Flink Rhino RhinoDFS

Rhino correctness

166

Backup
Misc

167

Sizing SPE resources

• Consider Source->windowByKey->Sink

• Input: record format, message/sec, window length, (k,v)-pairs format, num keys

• Ingestion bandwidth: records size * messages/sec

• How many servers for Source? Network throughput (per server)?

• Shuffling bandwidth: ingestion bw / num of consumers

• Memory shuffling bandwidth M for l local consumer(s)

• Network shuffling bandwidth N for r remote consumers

• Determine state write speed on each consumer

168

Sizing SPE resources

• On each consumer we have state size = num distinct keys * (k,v) size

• Determine output speed based on state size

• Based on the above, determine number of servers to handle window operator
and sink

• Add checkpointing?

169

