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Stateful Streaming Analytics at Scale
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• Scale-out on commodity hardware 
• Add more compute resource to meet desired performance 
• Cannot scale out infinitely using finite resources
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Problem: Hardware-oblivious SPE design does not enable  
efficient and reliable stateful stream processing
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Adopt hardware-conscious SPE design to enable 
efficient and reliable stateful stream processing 
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Executing streaming queries on SPEs

32

σ π ΓSource Sink

Interpretation-based Query Execution


pushP C

pushP C

Upfront Partitioning


Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer



Executing streaming queries on SPEs

33

Main-memory as “fast-network”

Yahoo! Streaming Benchmark

Intel i7 6700K @ 4 Ghz

L1: 32KB L2: 256 KB L3: 8MB

RAM: 32 GB

0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3T
h
ro
u
gh

p
u
t
(M

re
co
rd
s/
s) Flink

Spark
Storm



Executing streaming queries on SPEs

34

Handwritten Java: improvement up to 3.8x
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Handwritten Java: improvement up to 3.8x


Existing scale-up SPE: improvement up to 3x
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Handwritten Java: improvement up to 3.8x


Existing scale-up SPE: improvement up to 3x


Handwritten C++: improvement up to 4x


0

125

250

375
420

500
Memory Bandwidth

6.3 3.6 0.3
24

71.2
23

288

T
h
ro
u
gh

p
u
t
(M

re
co
rd
s/
s) Flink

Spark
Storm
Java: UP
Streambox
Saber
C++: UP



Proposed changes for scale-up design

37

Late Merge (LM)


Operator Parallelization strategies


pullP C

P Cpull

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Compute and merge partial 
states without data shuffling




Proposed changes for scale-up design

38

Late Merge (LM)


Operator Parallelization strategies


pullP C

P Cpull

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Compute and merge partial 
states without data shuffling


Tuple L1 L2 2⋅L2 L3/2 L30102030
Memory Bandwidth

Buffer Size

Th
ro

ug
hp

ut
(G

B/
s) Folly

Moody
MemFence
TBB
Boost
STL Queue
STL List
Java Queue

Upfront Partitioning using queues does not achieve 

full bandwidth even when batching



Proposed changes for scale-up design

39

Operator Parallelization strategies


pullP C

P Cpull

Global Merge (GM)
Late Merge (LM)


pullP C

P Cpull

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Parallelization: GM 

or LM instead of 


Upfront Partitioning

Compute and merge partial 
states without data shuffling




Proposed changes for scale-up design

40

Operator Parallelization strategies


pullP C

P Cpull

Global Merge (GM)
Late Merge (LM)


pullP C

P Cpull

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

σ,π,ΓSource Sink

Compilation-based Query Execution


Enable efficient data passing 
and code invocation Parallelization: GM 


or LM instead of 

Upfront Partitioning

Hardware-tailored 

Query Compilation for 


Stream Processing

Compute and merge partial 
states without data shuffling




Proposed changes for scale-up design

41

Operator Parallelization strategies
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Summary

• SPEs are CPU-Bound: they need design changes to exploit modern 
hardware efficiently


• Propose hardware-tailored query compilation and LM/GM operator 
parallelization to scale-up stateful streaming queries


• Two orders of magnitude throughput improvement are possible
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Data partitioning is a bottleneck 
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12x throughput improvement using 16 nodes 
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RDMA baseline limited by partitioning speed (CPU-Bound)

Slash is limited by memory speed
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Summary

• SPE design to accelerate streaming workloads using RDMA at rack-scale


• No free lunch: SPEs cannot efficiently scale-out using high-speed networks out-of-
the-box


• Achieve 12x throughput improvement over strongest baseline


• Slash is memory-bound; baseline is bound by partitioning speed
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Benchmarking reconfiguration with large state
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Our solution: Rhino
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Our solution: Rhino
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Our solution: Rhino
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State Migration Protocol to proactively 
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Summary

• Remove bottleneck induced by large state migration upon query 
reconfiguration


• Three orders of magnitude query reconfiguration time reduction


• Enable continuous SPE operations by supporting fault-tolerance, resource 
elasticity, and runtime reconfigurations for running stateful queries
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Publications and contributions

• Efficient Scale-up Stateful 
Stream Processing @ PVLDB 
2019


• Efficient Scale-out Stateful 
Stream Processing @ SIGMOD 
2022


• Efficient State Management @ 
SIGMOD 2020

84

• Ph.D. Proposal @ VLDB Ph.D. 
Workshop 2017


• State Migration PoC @ BTW 
2019


• NebulaStream Platform @ CIDR 
2020 & VLIOT 2021




Ph.D. lessons learned

• Research-oriented coursework helps


• I didn’t do that in my M.Sc., had to learn on the way at DIMA


• Idea -> Prototype -> Prove point -> Write paper sections -> Repeat


• Quick validation, paper is written step-by-step, full system at the end


• Don’t ever use different plotting libraries


• ..or you will have lots of fun by the time of your thesis submission/defense


• Check health of your experiment hardware
85



Research Outlook

• Internet-of-Things & Stream Processing Data Management


• Distributed Query Execution, Optimizing Compiler, and State Management 


• Fault tolerance, Resource Scheduling/Optimization


• Disaggregated Resources in Datacenter


• Implications on the design of data management systems


• CXL and “Resource Blades”


• Do research closer to “real-world” application needs 
86
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Today’s network speed
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Micro-architecture Analysis
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When Query-Compilation makes sense
..over Interpretation-based vectorized query execution

• Always performance gain by removing virtual function calls, reducing code 
footprint, improves data locality (efficient memory access patterns)


• however, hard to maintain and debug and requires suitable frontend and IR


• UDFs are a problem


• black-box: performance depends on UDF implementation


• look inside the UDF to holistically optimise query: better but how?


• UDFs with restricted semantics?
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How to architect a streaming query compiler

• Do I need a query compiler?


• Define query language and semantics (embedded, dialect)


• Define IR and what to capture (transformation, side-effects, state)


• Latency of query compilation (full opt, JIT, copy-and-patch)


• Codegen to C++/Rust or LLVM IR or ..? 


• Optimizing query compiler? Use live-statistics and keep optimising
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When LM/GM make sense

• Cost(Partitioning) > Cost(LM or GM)


• LM outperforms GM when partitioning keys follow a skewed distribution


• no conflicts but LM requires multiple merging steps: 
Cost(Merging)<Cost(Conflicts)


• GM is suitable with uniform distribution (see Grizzly)
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Spark DStream Tuning

• reduceByKeyAndWindow and CustomReceiver


• Followed best practices available in 2018


• Had to figure out spark.streaming.receiver.maxRate


• No disk storage or compression


• G1GC

103



Flink Tuning

• Followed best practices available in 2018


• Custom (de-)serializers


• Disable checkpointing 


• G1GC
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Outlook: improve state management

• In-memory hash-tables or LSM-Trees that neglect streaming semantics


• Not even a problem when in JVM due to impedance mismatch with C++ impl.


• Research outlook: consider streaming-aware storage


• Temporal and spatial locality of state access


• Design for modern-hardware: cache-friendly, local storage, remote storage


• Perform GC at window boundaries


• Make fault-tolerant (e.g., Scabbard)
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Hopscotch Hashing
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Open Addressing: it uses H neighbouring (consecutive) buckets for each bucket

Invariant: cost of finding item in neighbourhood = cost of finding item in the exact bucket



LRB - Toll and accidents 
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Early RDMA Benchmarks

109

1K
B

2K
B

4K
B

8K
B
16K

B
32K

B
64K

B
128

KB
256

KB
512

KB
1M

B
2M

B
4M

B
8M

B
16M

B
024
68 Network Bandwidth

Buffer Size

Th
ro

ug
hp

ut
(G

B/
s)

Java RDMA Read C++ RDMA Read TCP over IB
C++ RDMA Write C++ Send/Receive

020406080100 68 65 37 8.5Th
ro

ug
hp

ut
(M

Re
co

rd
s/

s)

C++ Read Only
C++ With Proc.
Java Read Only
Java With Proc.

020406080100 68 65 37 8.5Th
ro

ug
hp

ut
(M

Re
co

rd
s/

s)

C++ Read Only
C++ With Proc.
Java Read Only
Java With Proc.



Backup

Slash

110



Remote Direct Memory Access
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Socked-based vs. RDMA
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Distributed Streaming Query Execution
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Distributed Streaming Query Execution
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When Slash make sense

• Cost(Partitioning) + Cost(Local Computation) > Cost(Partial Computation)  + 
Cost(Lazy Merge)


• Keyed Aggregation or Joins (Streaming ETL)


• Define State as a CRDT


• New operators need to use our distributed state abstraction 


• Network-hungry such as Cross-Product 


• ML Operators
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Where RDMA comes into play
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Cost of RDMA

• Mellanox (now Nvidia) Connect X-6 200Gpbs sold at about 1200$


• Azure RDMA-capable H/HB instances: 800/1600$/mo


• AWS has Elastic Fabric Adapter (Send/Recv): 2180$/mo (m6in.32xlarge)
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Large SPE deployments

• Alibaba: 1.5M CPU for Flink (35000 jobs)


• Netflix: 14k nodes with 22k CPU (100s jobs)
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Slash Performance
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Nexmark Query 7
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Slash Microbenchmarks: COST
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Slash Microbenchmarks: Latency
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Slash Microbenchmarks: Node Parallelism
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Slash Microbenchmarks: Skew
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Slash State Backend Internals
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Leased Partition #1

Anatomy of Slash Partitions
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Conflict Free Replicated Data Types

• Inspired by AnnaKVS and FASTER design


• Define a “merge function” f(k, v1, v2) to merge v1 and v2 within the same 
window


• Windowed aggregation:


• Average, Sum, Count


• Windowed Join:


• List of segments
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RDMA Data Channel details

• Pipelined RDMA Writes of data chunks arranged in a circular queue


• Keep the RNIC well-fed with data


• Async: too little -> low bandwidth; too much -> RNIC cache trashing 


• Polling on footer


• Zero-copy


• Credit-based flow control to avoid producer overwhelm consumer
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Going beyond rack-scale

• Slash requires a number of RDMA connections quadratic in the num of nodes


• Use Two-sided (Send/Recv) instead of RDMA Write/Read


• Kalia et al.: RDMA requires NIC-managed connection state (a Connect-X5 RNIC 
drop 50% throughput with 5000 connections = 70 Slash instances) 


• RNIC SRAM: ~2 MB for connection and data structures, connection state ~375 
bytes


• Switch to application-managed connection state (datagram)


• Requires software Congestion Control (e.g., rate-based) and achieves 70-92% of 
network throughput
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RDMA Atomics

• Bound by PCI-Ex RTT as a lock in the RNIC is held until the op is completed


• 100s of ns with PCI-Express 3.0


• Should evaluate with PCI-Express 5.0 and newer models?


• Atomic semantics are atomic only among RNICs not CPU


• Consensus in the Network community on avoiding them 
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Slash internal processing
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Micro-architecture Analysis
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Slash Performance Gain Explained
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Our solution: Rhino
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Our solution: Rhino
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When to use Rhino

• Cost of restarting query violates SLO


• Cost of proactive state migration is still affordable (compared to original 
reconfiguration mechanism of target SPE)
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Rhino+Spark

• Trigger handover at micro-batch (RDD) boundaries 


• Finer granularity: trigger handover at stage-boundaries


• State Migration: 


• if state is RDD: replicate RDD incrementally 


• if state is in LSM-Tree: take incremental snapshot and use state-centric 
replication
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Consistent hashing with virtual nodes

• Split state of each operator instance into logical 
groups based on key 


• Consistent hashing reduces (k,v) remapping after 
rehashing 
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Consistent hashing with virtual nodes

• Split state of each operator instance into logical 
groups based on key 


• Without CH, remapping after rehashing involves 
potentially all keys


• CH reduces remapping after rehashing to k/m keys


• CH with virtual nodes remaps only the keys in a 
virtual node 
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Types of fault-tolerance for SPEs

• Transactional: MillWheel, each state update/produced record is a transaction


• Lineage: Spark Streaming, track and persistent input/output dependencies


• Checkpointing: Flink, variant of Chandy-Lamport snapshotting algorithm


• Change-log: KafkaStream, persist metadata changeling in commit-log
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Rhino requirements on host system

• R1: Streaming dataflow paradigm: tuple-at-a-time or BSP


• R2: Consistent hashing with virtual nodes


• R3: Mutable state, need to R/W state
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Rhino or Megaphone

• State migration in Megaphone is reactive and programmable in DSL


• Megaphone uses a migration operator in the dataflow program


• State migration is proactive to serve further reconfiguration transparently to 
end-user


• Rhino pipelines checkpointing and migration 


• Rhino has in-band synchronisation: markers flowing alongside data records


• Megaphone uses out-of-band synchronisation: only TimelyDataflow/MillWheel 
but costly on SPEs that rely on in-band synchronisation 
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Block-based replication is not enough
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Pipelined State Snapshots for SPEs
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Source: Carbone et al., State Management in Apache Flink, VLDB’17



End-to-end Evaluation (NBQ8)
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End-to-end Evaluation (NBQ5)
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End-to-end Evaluation (NBQX)
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Resource Utilisation (NBQ8)
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Resource Utilisation (NBQ8)
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Fluctuating Data Rate
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Rhino correctness
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Backup

Misc
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Sizing SPE resources

• Consider Source->windowByKey->Sink


• Input: record format, message/sec, window length, (k,v)-pairs format, num keys


• Ingestion bandwidth: records size * messages/sec


• How many servers for Source? Network throughput (per server)? 


• Shuffling bandwidth: ingestion bw / num of consumers


• Memory shuffling bandwidth M for l local consumer(s) 


• Network shuffling bandwidth N for r remote consumers


• Determine state write speed on each consumer

168



Sizing SPE resources

• On each consumer we have state size = num distinct keys * (k,v) size 


• Determine output speed based on state size 


• Based on the above, determine number of servers to handle window operator 
and sink


• Add checkpointing?
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